Effect of quantum fluctuations on the shape of an instanton
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Quantum effects strongly influence the shape of an instanton. In particular, for an
instanton with a dimension small in comparison with the confinement radius the
power-law asymptotic behavior of the classical solution at large distances from the
center of the instanton is replaced by a Gaussian decay of the profile function.

The conventional approach in calculating the instanton contributions to various
vacuum expectation values is to carry out an expansion in small deviations from the
mean field, which satisfies the classical Yang-Mills equations.’~* This expansion clear-
ly “does not work” for instantons with dimensions comparable to the confinement
radius R, in which case nonperturbative effects become important and change both
the shape of the instantons and their size distribution. Surprisingly, however, even for
a small instanton quantum effects cause a substantial change in the profile function at
large distances from the center of the instanton (R 2>x?Z p*/a,, where p is the scale
dimension of the instanton, and «, is the gluon-dynamic coupling constant).

The simplest way to incorporate the effect of quantum fluctuations on the shape
of an instanton is to use the method of an effective action. An effective action can be
used to derive an equation for the mean field. In the case of an instanton, however,
there are some specific features that must be dealt with: The existence of zero-point
modes in the field of the instanton makes it necessary to use “transverse’” Green’s
functions in the loop expansion for the effective action. The corresponding collective
coordinates [x,, the “center of mass” of the instanton; p, its scale dimension; and S (x),
the gauge phase] remain quantum degrees of freedom of the instanton field. Accord-
ingly, in contrast with the standard approach of using an effective action, in this case
we should find the contribution of an instanton with given values of x,, p, and S (x),
and the final results are then found by taking an average over these collective coordi-
nates. These coordinates are ordinarily introduced through the use of the solution of
the classical equations:
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The incorporation of quantum effects results in a change in the profile function f(£ ?) of
the mean gluon field. We should thus single out the collective coordinates, using
specifically this future mean field, rather than its classical part. It is not difficult to see
that in order to derive equations of motion from the effective action, we need to
impose restrictions on possible variations of the mean field; specifically, the variations
84,,(§) must not change x,, p, or S (x). In other words, the orthogonality conditions
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must be satisfied, where 13,-2# (¢) are the changes in the mean field Zy due to the
change in the collective coordinates. These restrictions lead to a modification of the
equations of motion which follow from the requirement that the effective action

Ser(4,,) be minimized:
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where A; are the corresponding Lagrange multipliers. To determine them, we multiply
Eq. (3) by D;4,,(£) and integrate over §. By virtue of the orthogonality of the various
D;A, (&), we find
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From (4) we see that the A, are related to the change in S.; upon the corresponding
symmetry transformation. Accordingly, if the symmetry is not broken by the quantum
anomalies, we find that the corresponding values of A; are zero. In our case, the only
broken symmetry is the gauge symmetry, and the only nonvanishing Lagrange multi-
plier A, is determined by
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where D, ZM =(1+¢&,9, );f” (§), and 6, (£) is the trace of the energy-momentum ten-
sor. Using the standard expression for a conformal anomaly,* we find
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where @, depends on the scale dimension / and on the field F* =2tr F2,.

To make Eq. (3) meaningful, we must calculate S,z or develop a model for it:
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For a small instanton the field near the center of the instanton is strong, and in
addition it can be assumed quite accurately to be uniform, since the uniformity condi-
tion® F,F ~3/241 holds by virtue of the large numerical factor F2(0) = 192. In this
case we can use the familiar expression® in the leading-log approximation:
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Far from the center of the instanton (R 3, X >& 2> 1) the field becomes weak, and we can

use the customary expression
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The following interpolation formula, which joins the two asymptotic expressions, is

quite accurate:
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Substituting (8) into (3), and using the single-loop expression for 4, = — (b /1677) in
the instanton ansatz,
I -2 b I,

we find an equation for the profile function f:
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The boundary conditions f(0) = 1, f(o0) = 0 are dictated by the requirement that the
topological charge be unity:
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We see from (9) that under the condition £ 2> 1 we have the asymptotic behavior
2 b 2
F(E)~ — exp ~ 5% Ep A"} ;

at £2<1, on the other hand, we can use the classical solution, (1), and the interpolation
formula

2y = 1 b 2l
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which gives an approximate description of the behavior of the profile function at
£2<R?2, ,- We thus see that the quantum effects cause a significant decrease in f(§ ) at
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The effects discussed here become particularly important for instantons with
scale dimensions p ~ R... It may be that the incorporation of these effects will lead to a
solution of the problem of calculating the instanton contributions to various physical
quantities.

We are indebted to A. A. Migdal and A. M. Polyakov for useful discussions.
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