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An SU(2) expanded supersymmetry group with central charges Z, and Z, is -
analyzed. A study is made of the spin-isospin structure of those irreducible
representations for which the momenta P, and the charges Z, and Z, satisfy
P =734 Z2.
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Fayet' and Sohnius? have outlined the structure of a hypermultiplet for an SU(2)
expanded supersymmetry group with central charges. So far, we do not have a descrip-
tion of the entire series of representations to which this multiplet belongs. In the
present letter we analyze the spin-isospin structure of those irreducible representations
of this supergroup for which the eigenvalues of the square momentum, P2, and of the
central charges are related by P> =Z3 + Z 2. The Fayet-Sohnius hypermultiplet is
the simplest of these representations.

We consider the SU(2) expanded supersymmetry group>* with central charges®
Z, and Z,. We write the commutation relations for the supersymmetry generators .S,
in this case as’

(85,38 y=o8f(P+Z,+iv2,)f, (1.1)
(M,.5%1=i(0,)f st (1.2)
[1,8,51="1 8] @)f> (13)
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&

where the S obey the SU(2)-covariant Majorana condition*

o]

sz = F___ eki '/C—l 75)(2[1 Sﬁi'
In (1.3), 1, are the isospin generators, and (7, )* are the isospin Pauli matrices. We will
not reproduce the rest of the well-known relations of this superalgebra.

Let us consider representations for which the eigenvalues of the operators P2, Z,,
and Z, satisfy the relation P> =m?> = Z32 + Z2. For such representations, the anti-
commutator (1.1), expressed in terms of the quantity’

p i . . .
Q, = (exp 5 Ts g)aﬁ (Sﬁl + ,Sﬁz)’ Zy +iysdy, = Zexpiys 0,

takes the following form in the rest frame (P = 0) and in the standard representation
for ¥ matrices:
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{Qy *y=2m8r {Q, 0 }=0. 2.1)

This form corresponds to the algebra of the creation, Q* = (Q, )", and annihilation,
Q.,, operators for the values @ = 1 and 2, while the matrix elements of Q, and (Q,)"
with @ = 3 and 4 vanish. We have set Z = m in (2.1). Commutation relations for the
nonvanishing generators Q, (a = 1,2} with the generators of the angular momentum
M"= —1e"™M,, and I, follow from (1.2) and (1.3):

(. 0,1== 1 e™M,7 05 11.0,1= 0,
(2.2)

[1.0,1=iC,; [lz,Qa]=%Qa

where (0"}, are the spin Pauli matrices, I, = I; + if, and 0* = €0, 0. =€, 0%
Relations for Q,, are found from (2.2) by taking the Hermitian adjoint. The superspin
vectors Y* and the superisospin vectors 7T, of the small momentum group

a

P* = (m,0,0,0) take the following form for representations with m = Z:

Y® = 0; Y“’”"’Z,ln’ 0%(0™"), P Qy ; (n=1,2,3)

+
2 4m

where a summation over o and 8 from 1to 2 isimplied; T, =7, +iT,-Y"and T,
commute with Q, and @, and with each other [Y”",T, ] =0; and each satisfies the
relations of the SU(2) algebra for the angular momentum and the isospin, respectively.

By virtue of the latter relation, the Casimir operators E (Y")? and z )* have the
a=1

eigenvalues Y (Y + 1) and T'(7 4 1), respectively, for 1rreduc1ble representations. The

quantities ¥ and 7, which take on integer and half-integer values, determine the super-

spin and superisospin of the irreducible representation.

Let us examine the content of the irreducible representations with P> = Z . Since
the operators Q,,, Y3, and T, commute, we can find a normalized state |® ) which,
being a Clifford vacuum,

Q,19>=0, (4)
simultaneously has the maximum eigenvalues of the operators Y and T,, which are ¥
and T, respectively:

YHe> =Yid>=0; ¥ [®#>=0; T, d>=Tid>; T [¢#>=0, (5)
where ¥, = Y' +/Y? It then follows from (2.1)5) that the superspin and the su-
perisospin of the state |@) are Y and 7" and that in the basis with the quantum

numbers |S, S;; 1, I,), where S and S; are the spin and its third projection, and [ and I,
are the isospin and its second projection, this state is
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f®@>=1Y,Y, T+ 1/2, T+1/2 >~

For given values of the superspin Y and of the superisospin 7, we can work from the
|@ ) state, using the operators Q,, M_ =M"'—iM?, and I_, to construct all four
states with definite values of the spin and the isospin and different spin and isospin

projections S5 and I,:

172
(Y80 @+ g+ 1\

|Y,S3,’T+%_, Il>=
2 QY -Ss) QT+ (T~ 1,+ Q

X (M_ )Y——S;;(I-)T—Jrﬁl/z 1>

12
iY S 'T—- 1 I > — ."_]
’ 3 2 ’ 2 TI'IZ I—‘"—

1/2
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Y, S5, T+=- 1>+
X[ Tl I 3 > 2

172
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2m (2 Y+1)(T+], +1)/

IY+_%',S3;T; 12>=(
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1/2
IY-——I,S:;,'T.12>:/ 27T +1
2 \2 mQY +1)(T+1, +1)

1/2
XI¥ =S5+ Q' 1¥s -t

1/2

i 1 g -
T+ Ly + 5> (F8340) QP IV S+ LT+ [ + 2>

In this manner we can find all possible matrix elements of the spinor generators O,
and Q°.

In general, therefore, the irreducible representation with P 2 = Z?, with superspin
Y and superisospin 7, has the following spin-isospin (S, I'} structure:

. r+%) ® (Y, T— —;-)aa (Y+~% ,T) &(Y — —;,T)- (6)

Two series of representations with a content sparser than that in the general case, (7),
have a common lower representation: a Fayet-Sohnius hypermultiplet corresponding
to the values Y= T =0 and the structure (1/2,0) & (0,1/2). These two series are (1)
Y=0, with (1/2,T)® (0,T +1/2) ® (0,T—1/2), and (2) T=0, with (Y4 1/
2,0) @ (Y,172) ® (Y, — 1/2,0).

For the N = 2 versions of expanded supergravity theories and super-Yang-Mills
representations, the following representations are of interest: ¥ = 3/2, T'=0, with
2,0) ® (3/2,1/2) & (1,0), and Y= 1/2, T=0, with (1,0) @ (1/2,1/2) & (0,0).
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