Domain structure of a ferromagnet in a rapidly oscillating magnetic field

A. K. Zvezdin and V. G. Red'ko

(Submitted February 23, 1975) ZhETF Pis. Red. 21, No. 7, 445-447 (April 5, 1975)

It is shown that the effective energy of the domain walls changes in a high-frequency magnetic field. The possible domain-structure rearrangement due to the effect is considered.

In this paper we study the behavior of domain walls and domains in a magnetic field oscillating with time with a frequency much higher than the ferromagnetic-resonance frequency. We assume that the high-frequency field h causes the magnetization to execute small oscillations m relative to the smoothly varying value \mathbf{M}_0 . In this formulation, the situation recalls a problem considered by P.L. Kapitza, that of the motion of a particle acted upon simultaneously by a constant field and a rapidly alternating force. [11]

1. The equations of motion of the magnetization in spherical coordinates are

$$\dot{\theta} = -\frac{\gamma}{M \sin \theta} \frac{\delta E}{\delta \phi} - \alpha \dot{\phi} \sin \theta, \quad \dot{\phi} \sin \theta = \frac{\gamma}{M} \frac{\delta E}{\delta \theta} + \alpha \dot{\theta}, \quad (1)$$

where the angles θ and ϕ determine the orientation of the magnetization \mathbf{M} , E is the energy density, γ is the gyromagnetic ratio, α is the damping parameter, $E=E_0+E_h$, and $E_h=-\mathbf{M}\cdot\mathbf{h}$ is the energy in the field \mathbf{h} . We assume that $\theta=\overline{\theta}+\theta_1$ and $\phi=\overline{\phi}+\phi_1$, where $\overline{\theta}$ and $\overline{\phi}$ are the angles averaged over the oscillations, while θ_1 and ϕ_1 are small $(\gamma h\ll\omega)$ rapidly oscillating quantities. We use the following calculation procedure θ_1 : a) we expand Eqs. (1) in powers of θ_1 and θ_1 , confining ourselves to a quadratic or linear approximation; b) we separate the smoothly-varying and rapidly-oscillating quantities in the obtained expressions; c) from the equations for the oscillating variables we obtain θ_1 and

 ϕ_1 , substitute these values in the formulas for the smooth quantities, and thus obtain equations for $\overline{\theta}$ and $\overline{\phi}$.

2. Let us investigate the effect of a linearly polarized field $\mathbf{h} = \mathbf{h}_0 \cos \omega t$ on the domain-wall structure in a uni-axial ferromagnet. Neglecting damping and confining ourselves in (1) to the approximation quadratic in θ_1 and ϕ_1 , we obtain equations for $\overline{\theta}$ and $\overline{\phi}$:

$$\frac{\overline{\delta E_o}}{\overline{\delta \theta}} = 0, \qquad \frac{\overline{1}}{\sin \theta} \quad \frac{\delta E_o}{\delta \phi} = 0. \tag{2}$$

The energy density E_0 is given by

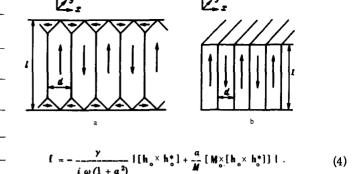
$$E_{o} = A \left[\sin^{2}\theta \left(\frac{d\phi}{dx} \right)^{2} + \left(\frac{d\theta}{dx} \right)^{2} \right] + K \sin^{2}\theta + 2\pi M^{2} \sin^{2}\theta \cos^{2}\phi . \tag{3}$$

Here A is the exchange constant, K is the anisotropy constant, the z axis is directed along the easy axis, and the x axis is perpendicular to the plane of the wall. Assuming for the Bloch and Neel walls $\overline{\phi}=\pi/2$ and $\overline{\phi}=0$, we find that at the investigated field orientations (see the table) the equation for θ reduces to the usual form, but with an effective anisotropy constant $K_{\rm eff}$ (compare with $U_{\rm eff}$ in $^{(11)}$), namely $K_{\rm eff}$ sin $\overline{\theta}$ cos $\overline{\theta}=A(d^2\theta/dx^2)$. The values of $K_{\rm eff}$ are listed in the table. The domain-wall energy $\sigma_w=\int (\overline{E}-\overline{E}_d)\,dx$, where \overline{E}_d is the value of \overline{E} inside the domains, is given by $\sigma_w=4(AK_{\rm eff})^{1/2}$. Physically, the change of σ_w in the oscillating field means that

Field direction	Bloch wall Neel wall		
h x	K _{eff}	$K(1-\epsilon^2)$	$K\left(1-\frac{1}{2}\epsilon^2\right)+2\pi M^2$
	E _d	$\frac{1}{2}K\epsilon^2$	
h y	K _{eff}	$K - \frac{1}{2} (K + 2\pi M^2)\epsilon^2$	$(K+2\pi M^2)(1-\epsilon^2)$
	\overline{E}_d	$\frac{1}{2} (K + 2\pi M^2) \epsilon^2$	
h z	K _{eff}	$K + \pi M^2 \epsilon^2$	$K = \pi M^2 \epsilon^2 + 2\pi M^2$
	\bar{E}_d	0	

when the magnetization precesses in the field h a change takes place in the average anisotropy energy and the demagnetization in the domain walls.

- 3. Let us examine the change of a layered domain structure (see the figure) in a field h(t). Let $h \parallel z$; we determine the period of a structure with closing domains (Fig. 8). The energy per unit volume of the sample $(l \gg d)$ is $E_t = \sigma_w d^{-1} + (1/2)Kdl^{-1}$. Assuming that the equilibrium domain dimensions are determined by the usual condition that the average energy be minimal, we obtain $d = d_0(K_{\rm eff}/K)^{1/4}$, where d_0 is the width of the domains at h = 0. Assuming $\pi M^2/K \sim 10$, $h_0 \sim 10$ Oe, and $\omega \sim 10^9~{\rm sec}^{-1}$, we obtain $d/d_0 \approx 1.1$. For the structure shown at Fig. b we can show analogously that at $K > 2\pi M^2$ and $\overline{\phi} = \pi/2$ the value of E_t is smaller in a field $h \parallel x$ than in a field $h \parallel y$, i.e., the domain walls tend to turn perpendicular to the field $h \gg 1$.
- 4. An interesting situation arises at arbitrary polarization of the field, $\mathbf{h} = \mathbf{h}_0 \exp(i\omega t) + \mathbf{h}_0^* \exp(-i\omega t)$. Following the procedure described above, we can show that, in the approximation linear in θ_1 and ϕ_1 , the equations of motion for \mathbf{M}_0 acquire an additional effective field



If the field h is linearly polarized, then f=0. If h is circularly polarized in the xy plane, then f has in the case of small damping only a z component, $f_z = (1/2)\gamma h_0^2/\omega$. In such a field, an additional pressure is exerted on the domain walls by the difference between averaged energy densities in the domains with opposite methodizations.

The considered effects were obtained under the condition $\omega > \omega_{\rm res}$, but since they are determined by the amplitude of the magnetization oscillations we can expect them to increase and tend to $\omega_{\rm res}$.

The authors are grateful to V.M. Eleonskiĭ for useful discussions.

¹⁾The behavior of ferromagnets without a domain structure in a rapidly oscillating field was investigated in^[2].

²⁾A similar result was obtained from other considerations. ^[3]

¹L. D. Landau and E. M. Lifshiftz, Mekhanika (Mechanics), Moscow (1965), Sec. 30 [Addison-Wesley, 1971)].

²A.I. Akhiezer and S.V. Peletminskii, Fiz. Tverd. Tela 10, 3301 (1968) [Sov. Phys.-Solid State 10, 2609 (1969)].

³E. Schlöman and J.D. Milne, Digests of the Intermag. Conference (1974), Toronto, 24/5.