Dynamics of collapse of electromagnetic solitons
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We obtain self-similar solutions for the collapse of disk-shaped electromagnetic formations for the case € 0.

PACS numbers: 52.40.D

It is known that the character of the penetration of
small-amplitude electro-magnetic waves (w?= «?,
+ F2¢?) into a plasma is determined by the sign of the
dielectric constant e, =1~ w?2/w?. If ¢, is positive, then
the plasma is transparent to waves of given frequency,
and the depth of penetration of the radiation is deter-
mined by the dissipative processes. In the opposite
case, the wave penetrates into the plasma only to the
depth of the skin layer u*=c¢/V wm2 — w?. When the
amplitude is increased to the level W/nT > (Akc/w,,)?
(A is the width of the spectrum), the picture becomes
more complicated, so that an important role is assumed
by the radiation-pressure force F=~9U (where U
=ne?| E|2/4mw? '), which leads to perturbation of the
density by an amount 6n~—n,(W,/nT), and the wave can
penetrate into the plasma even if the dielectric constant
is negative. The solution of the one-dimensional bound-
ary-value problem then leads to the conclusion that if
€, is small enough, then electrosonic solitons, i.e.,
stable local density minima of width ut~§, filled with
electromagnetic radiation, propagate into the interior
of the plasma, 2! Under real conditions these solitons
are bounded in the other two spatial coordinates, so
that in the case of interest to us, that of an axially-
symmetrical formation (z,R) (the z axis is directed
along the group velocity), the parameter 5/R, (R, is the
characteristic radius) should be regarded as finite.
However, three-dimensional formations of the soliton
type are, generally speaking, unstable with respect to
self-compression at W/nT > (Akc/w,,)?, i.e., they
collapse'® (this phenomenon is analogous to the insta-
bility of cold Langmuir gas, discovered in 1964 by
Vedenov and Rudakov'4! and investigated in the nonlinear
stage by Zakharov'®), Assuming §/R,<« 1 (disk), let us
consider the dynamics of such a collapse.

The fundamental system of equations, in terms of the
variables #— wt and x — wx/c, is of the form'?!

2.'%? +V2E +¢, E- onE=0 )
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and the terms 22E/9f? and VdivE, which are small in our
case, have been left out from (1). The system (1) and

(2) has the following subsonic particular solutions: if

€, =0 (w*=w?,) and 9%6n/2* < cEVZ0n (the “adiabatic
limit”), then we have in a’ reference frame that moves
together with the soliton!®71;
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where S is an arbitrary phase.

If ¢, <0 (le,| < 1), then the width of the soliton along
the z axis is fixed (u*). Choosing E = E(/l¢,l (z — Mc,t))
(where M=v,/c, is the Mach number), we obtain

E =E (chyle, | (z=Mc,t)) " expliMe, (z - Mc,t) +iS),  (4)

20e,| =EX(1-MY-. (5)

We seek the solution of the system (1) and (2) for a
three-dimensional formation of a disk in the form (3)
or (4), assuming E, and S to be slowly varying functions
of R and ¢ (Ez/E,«< 1).

For the case ¢,=0, we substitute the solution (3) into
the system (1) and (2), separate the real and imaginary
parts, and integrate with respect to z with allowance
for the relation |7, E,[cosh(E,/V2)z] ' dz=V2r. We ob-
tain a simple system of equations consisting of the con-
tinuity equations for E, and a nonlinear equation for the
phase S(R,t), which has a self-similar solution in terms
of the variables t=R/7/% and 7=¢,—t (where ¢, is the
collapse time). In terms of the variables R and ¢, this
solution takes the form

] %
~ 2 R?
E,(R.t) = v %[- ‘/J ex -
e, =t) fe, =)™ 3e,-e)”
(6)

The thickness of the disk is

. Rz - %
Bt ~ t)"( -—-%) ,
(t, —¢)
since E, is approximately constant. Near the point £
=1, the solution (6) does not hold, since §/R,~~ and
9E/3R has a discontinuity. In this region we have

E. g @

It follows from (7) that the fraction of the energy in the
region £= 1 is small in comparison with the energy of
the collapsing formation, and it can be assumed that
the region of large ¢ does not influence the solution (6),
For the case ¢, <0 (le,) << 1) it is necessary to introduce
a new function & = E expile,/2)t/Y1 = M?, and then the
system of equations for £ will coincide in form with the
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system (1,2) for the function E at ¢,=0. We seek the
solution of this system in the form ¢ = ¢ expiS (where
¢ =E,(R,t)[coshVle,| (z = Mcyt)] " expiMcy(z - Mc,t) and
S(R,t)=c(R,t) - 21In(t, - £), separating the real and
imaginary parts, and integrating with respect to z with
allowance for the relations

}-Eo( cosh \/l-‘.,—lf) -ldf

andf Eg (cosh \A’oi f)"adf = -2- ]
Vil =< Viel

= —

we obtain a relatively simple system of equations having
a self-similar solution in terms of the variables
=R/V7T and T=t,—¢. If it is assumed that the term
V2E,/2E, is small in accordance with the condition E4/E
<« 1, then the solution can be written in the form

% R? .
exp|l-i— [= E, e's, (8)
4, —-t)

o~ 2 R?
E(Rit) =—=1[1-
Ve, -t 8(e,-1t)

At R >V8{t, - ) expression (8) does not hold, since 3E/
oR has a discontinuity. In this case it is necessary to
take V2E into account and solve more exact equations.

The solution (8) and relation (5) show that a disk
initially flat at e, <0 and ¢yl <1 will be deformed in the
course of the collapse and be converted into a cone with

a “blunted apex” pointing in a direction opposite to the
motion. The cone profile z(R,{) at t—~ {, can be easily
obtained. We have z(R— R,)~R and z(R— 0) ~const. As
to the radiation of sound, by choosing the initial field
amplitude it is always possible to make the collapse
time large, and consequently all the accelerations (~c,/
f,) can be made small., Therefore the conditions under
which sound radiation can be neglected are realistic.

It is interesting to note that, owing to the collapse,
the depth of penetration of a soliton~-type electromagnetic
wave is finite at ¢, <0 and cannot exceed c,, so that the
energy is dissipated near the boundary.
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