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It is shown that passage of an ultrasonic wave through the boundary between two semiconductors can cool

this boundary.

PACS numbers: 72.50., 73.40.L

It is known that when electric current flows through a
contact between two conductors, cooling of the contact
can take place (the Peltier effect). In this article we
show that passage of an ultrasonic (acoustic) wave
through the boundary between two conducting solids can
also lead to cooling of this boundary, although there is
no flow of electric current through the boundary.

For the sake of argument, we consider the boundary
between two degenerate n-type piezoelectric semicon-
ductors (such as InSb, GaAs, etc.) 1 and 2 (see the
figure), perpendicular to which there propagates a
wave of frequency f, wave vector ¢!l Ox, and intensity
S. We consider the case gl<<1 (I is the electron mean
free path) and neglect completely the heating of the elec-
tron gas in the field of the sound wave. The symmetrical
part of the electron distribution function can then be re-
garded as a Fermi distribution with local lattice temper-
ature T and chemical potential £(x,#)=&,+ &,(x,#), where
£, is the equilibrium value of the Fermi level and &, is
an alternating increment to this level, due to the forma-
tion of electron bunches in the field of the sound wave
(see'!!). Inasmuch as at low temperature the kinetic co-
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efficients can be greatly influenced by the mutual drag-
ging of the electrons and thermal phonons (see, e.g.,'?!),
the system of fundamental equations of our problem con-
sists of the standard system (the elasticity, Poisson,
and current-continuity equations as well as the kinetic
equation for the electrons, see, e.g.,!®) plus the
kinetic equation for the thermal phonons that interact
with the electrons dragged by the external sound. We
solve this system by iterating with respect to the ampli-
tudes of the acoustic wave, and obtain expressions for
the acoustoelectric current and for the energy fluxes
carried by the sound-dragged electrons themselves,

Q,, and by the thermal phonons dragged via the elec-
trons, Q. We shall consider the case of an open-cir-
cuited sample, when the acoustoelectric current through
the boundary is equal to zero. In the expression for the
total energy flux @ =@, + Q,, accurate to terms of order
(RT/ &))< 1 and (v,/vp) <1 (v, is the speed of sound and
v, is the Fermi velocity) takes the form
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Here I' is the sound absorption coefficient, « is the total
thermal conductivity of the crystal (lattice «, + elec~
tronic «,) with allowance for the effective mutual drag-
ging of the electrons and thermal phonons. I, is the
mean free path of the Fermi electrons without allowance
(1) for the dragging effect, m is the effective mass of
the electrons, and

20 .

BT f dgq®(hiq) "L (9)1L L.
(pp is the Fermi momentum, while L{g) and L,(q) are
respectively the total phonon mean free path and the
free path of the phonons scattered by the electrons). It
is easy to see that down to very low temperatures (on
the order of 0.001 °K) the second term in the round
bracket in (1), which is connected with dragging of
thermal phonons, can be neglected, as we shall do from
. NOwW on,

It is next necessary to solve for each of the contacting
semiconductors the equation of continuity of the energy
flux, with allowance for the absorption of part of the
sound wave in the volume and its conversion into heat.

It is necessary here to specify the concrete dependence
of the thermal conductivity « on the temperature, and
the corresponding boundary conditions. Using the bound-
ary conditions as shown in the figure, and a power-law-
temperature dependence of the thermal conductivity,
«(T)~T", we obtain for the temperature of the boundary
between the semiconductors
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where a is the length of the semiconductors in the direc-
tion of sound propagation, and the subscripts 1 and 2
pertain respectively to the first and second materials.
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It is easy to see that if the condition

lp, YF2 _ a “ lpy vp,
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is satisfied, then the second term in the curly bracket
of (2) is negative and the boundary begins to cool down.
We assume by way of estimates that material 1 has a
small sound absorption (', —0) and material 2 is doped
n-InSb with n,=10'*® cm™® 4 =10° cm?/V-sec, and a

=1 cm at 7,=0.1°K. Then, assuming that the scatter-
ing of the thermal phonons takes place predominantly
on the electrons {x=k, =107 W/cm-deg), and choosing
a sound frequency f=30 MHz, we find that the second
term in the curly bracket of (2) becomes of the order of
—0.1 at a sound intensity s=1 W/cm?.

We note finally that formula (2) and the estimates
made are valid under the condition (£,/kT)<<1. There-
fore, if the temperature drops to such an extent that
this condition is not satisfied, it is necessary, to find
the temperature of the boundary, to solve the nonlinear
problems when £ =kT.
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