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A localization is presented of the spectrum of the operator L = -(32/3x?) + u(x) with a complex periodic
potential u(x). Formulas are presented for the expansion of functions that are summable over (— «, «) in

eigenfunctions of the operator and of the Parseval equation.
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1, Within the framework of the potential model of
scattering with energy absorption, the potential u(x) is
complex, andin a medium with a crystal structure it is
also periodic. This explains the need for solving the
problem of eigenfunction expansion of the Schridinger
operator L, = - (3%/82%) + ufx) with a complex periodic
potential u{x) =ulx + 7).

As is well known, the spectrum of an operator with
a continuous periodic real potential consists of an in-
finite half-line E > E,, from which an infinite or finite
number of forbidden intervals (lacunae) have been
removed.

Let E be a point of the continuous spectrum and let
cpl,z(x;E) be a certain fundamental system of solutions
of the equation (L ~ E)¢=0, and let T(E) be a matrix
defined by
T(E) =(u”a” >

%21%22
The trace of T(E) and the eigenvalues p, ,(E) do not de-
pend on the choice of the basis ¢, ,(x;E). F(E)=(1/2)Tr
T(E) is an entire function and behaves asymptotically
like cos TVE, . Since detT(E)=1, we have

Py oF) = F(E) i1 - FYE). (2)

The fact that the point E belongs to the continuous
spectrum means that all the solutions of the equation
(L - E)¢ =0 are bounded along the entire axis. This is
equivalent to the equality | p, ,(E)l =1. Since p,p,=1,
this yields p, ,(E)=exp[ip(E)7], where p(E) is a real
quasimomentum. Comparison with (2) yields

S lxvr) =a b %) va b,ix), i =1,2 (1)

F(E) = cosr p(E), TaF(E), CFE) & 1

(3)
rp(Es = ilnlFrk) iyl - FYE)

{the sign of the root is such that p(E) ~iIn2F(E) as E

— —oo, The derivation of (4) does not require that the
potential u(x) be real, i.e., the following general state-
ment has been proved:

The spectrum of the operator L = — (9%4/32) +u(x)

with real or complex potential coincides with the set
#(EIImSpT(E} -0, SpT(E) < 2). (4)

A rough asymptotic estimate of Tr7(E) does not de-
pend on whether the potential is real, so that the struc-
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ture of the spectrum u is asymptotically the same as
in the case of a real potential. It is important that the
plane with the spectrum removed remains connected,
since u cannot contain closed curves. Sefs of this type
were investigated in detail inl!,

2. Knowledge of the spectrum makes it possible to
obtain the following theorem concerning eigenfunction
expansions.

Let the function f(x) belong to L{—=,») and have a
bounded variation in the vicinity of the point x; then

1 (E}dE
fla) » = g 2L

—— Ly (x ERy(E) « ¢, (x; EYe (E)1eE . (5)
4n p vl =F4E)

Here ;b,.(x;E) is the Bloch function of the operator L, and
h(E) = [y (x EVfix)dx, ¢ =1,32. (8)

We have ¢(E) = ¢(7;E), where ¢(x;E) is the solution of
the equation (L — E)¢ =0 with initial conditions ¢(0;E)
=0 and ¢'(0;E)=1. The integration in (5) is over u as
along a cut, i.e., on both edges of each arc contained
in u. The function VI = FZ(E) is unique in the plane with
the removed spectrum u, and the sign of the root is
determined by the condition v1 = F2(E)~~{F(E) as E

— —00

For a real potential, formula (5) is a transformation
of formula (21.6.3) of'?!, The proof given in'®! is based
entirely on the asymptotic forms of F(E) and ¢, ,(x;E),
which do not change in the case of a complex potential;
this proves the representation (5).

From (5) we arrive directly at the Parseval equation
equation
o T E)dE
[f¥x)dx = — f——(éi—)———-hl(E)hz(E). ")
o 27 4y 1 - FYE)

We transform formulas (5)—(7) to a form close to the
Fourier transformation. The spectrum u lies on one
branch of the curve ImF(E)=0, and E, is its starting
point. We draw from the point E; a cut along this
curve. The function p(E) (see (3)) maps conformally
the plane E with the cut onto the half-plane Im p >0, with
vertical final cuts that emerge from points that are
multiples of 7. The transform of the spectrum g fills
the entire real axis, and the spectrum points E, on
opposite edges correspond to the points + p. As is well
known,
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e E) mexpleip(E)x) X (% E).  X(x+7; E) = X(x; E). (8)

It is easy to verify that ¥ ,(x;E) in (8) are the values of
one and the same function y(x, E), which is analytic in
E, on opposite edges of the cut, The same holds for

Xi, 2(x E}). We express E in terms of p (E=E(p)}. We
denote by $(x;p) and £ (x;p) the functions {(x;E) and x (x;E)
expressed in terms of p, In terms of the variable p,
formulas (5)—(7) become

LT e e
f(x) —Er_fwd FE] p)f (~p), (9)
fte) = 1 ;"”’ >2(x; pHf(x)dx . (10)

- o8

[Frede = L [ ap 2LER) 7
27 o F*E(p)]

f(-pIfip) 11)

o(E)/F'(E) and % (x; p) tend to unity as p— +«. These
formulas are useful also in the case of a real potential.

I am grateful to B.M. Levitan and S.P. Novikov for
stimulating discussions.
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