complex potential

N. N. Meiman

Institute of Theoretical and Experimental Physics (Submitted April 10, 1975)

ZhETF Pis. Red. 21, No. 10, 621-624 (May 20, 1975)

A localization is presented of the spectrum of the operator $L = -(\partial^2/\partial x^2) + u(x)$ with a complex periodic potential u(x). Formulas are presented for the expansion of functions that are summable over $(-\infty, \infty)$ in eigenfunctions of the operator and of the Parseval equation.

PACS numbers: 03.65.G

1. Within the framework of the potential model of scattering with energy absorption, the potential u(x) is complex, and in a medium with a crystal structure it is also periodic. This explains the need for solving the problem of eigenfunction expansion of the Schrödinger operator $L_u = -(\partial^2/\partial x^2) + u(x)$ with a complex periodic potential $u(x) = u(x + \tau)$.

As is well known, the spectrum of an operator with a continuous periodic real potential consists of an infinite half-line $E \geqslant E_0$, from which an infinite or finite number of forbidden intervals (lacunae) have been removed.

Let E be a point of the continuous spectrum and let $\phi_{1,2}(x;E)$ be a certain fundamental system of solutions of the equation $(L-E)\phi=0$, and let T(E) be a matrix defined by

$$T(E) = \begin{pmatrix} a_{11}a_{12} \\ a_{21}a_{22} \end{pmatrix}, \quad \phi_i(x+r) = a_{i1}\phi_1(x) + a_{i2}\phi_2(x), \quad i=1,2 \quad (1)$$

The trace of T(E) and the eigenvalues $\rho_{1,2}(E)$ do not depend on the choice of the basis $\phi_{1,2}(x;E)$. $F(E)=(1/2){\rm Tr}$ T(E) is an entire function and behaves asymptotically like $\cos \sqrt[4]{E_0}$. Since $\det T(E)=1$, we have

$$\rho_{1/2}(E) = F(E) \pm i \sqrt{1 - F^2(E)},$$
 (2)

The fact that the point E belongs to the continuous spectrum means that all the solutions of the equation $(L-E)\phi=0$ are bounded along the entire axis. This is equivalent to the equality $|\rho_{1,2}(E)|=1$. Since $\rho_1\rho_2=1$, this yields $\rho_{1,2}(E)=\exp[i\,p(E)\tau]$, where $\rho(E)$ is a real quasimomentum. Comparison with (2) yields

$$F(E) = \cos \tau \rho(E), \qquad \text{Im} F(E), \qquad F(E) + \leq 1.$$

$$\tau \rho(E) = i \ln \left[F(E) - i \sqrt{1 - F^2(E)} \right]$$
(3)

(the sign of the root is such that $p(E) \sim i \ln 2F(E)$ as $E \rightarrow -\infty$. The derivation of (4) does not require that the potential u(x) be real, i.e., the following general statement has been proved:

The spectrum of the operator $L = -\left(\partial^2 u/\partial_x^2\right) + u(x)$ with real or complex potential coincides with the set

$$\mu(E: \operatorname{Im} \operatorname{Sp} T(E) = 0, \qquad \operatorname{Sp} T(E) = 2). \tag{4}$$

A rough asymptotic estimate of TrT(E) does not depend on whether the potential is real, so that the struc-

ture of the spectrum μ is asymptotically the same as in the case of a real potential. It is important that the plane with the spectrum removed remains connected, since μ cannot contain closed curves. Sets of this type were investigated in detail in^[1].

2. Knowledge of the spectrum makes it possible to obtain the following theorem concerning eigenfunction expansions.

Let the function f(x) belong to $L(-\infty,\infty)$ and have a bounded variation in the vicinity of the point x; then

$$f(x) = \frac{1}{4\pi} \int_{\mu_1}^{\pi} \frac{\phi(E) dE}{\sqrt{1 - F^2(E)}} \left[\psi_1(x; E) h_2(E) + \psi_2(x; E) h_1(E) \right] dE.$$
 (5)

Here $\psi_i(x;E)$ is the Bloch function of the operator L, and

$$h_i(E) = \int_{-\infty}^{\infty} \psi_i(x; E) f(x) dx, \quad i = 1, 2.$$
 (6)

We have $\phi(E)=\phi(\tau;E)$, where $\phi(x;E)$ is the solution of the equation $(L-E)\phi=0$ with initial conditions $\phi(0;E)=0$ and $\phi'(0;E)=1$. The integration in (5) is over μ as along a cut, i.e., on both edges of each arc contained in μ . The function $\sqrt{1-F^2}(E)$ is unique in the plane with the removed spectrum μ , and the sign of the root is determined by the condition $\sqrt{1-F^2}(E)\sim -iF(E)$ as E

For a real potential, formula (5) is a transformation of formula (21.6.3) of [21]. The proof given in [21] is based entirely on the asymptotic forms of F(E) and $\psi_{1,2}(x;E)$, which do not change in the case of a complex potential; this proves the representation (5).

From (5) we arrive directly at the Parseval equation

$$\int_{-\infty}^{\infty} \int f^{2}(x) dx = \frac{1}{2\pi} \int_{\mu} \frac{\phi(E) dE}{\sqrt{1 - F^{2}(E)}} h_{1}(E) h_{2}(E).$$
 (7)

We transform formulas (5)—(7) to a form close to the Fourier transformation. The spectrum μ lies on one branch of the curve $\operatorname{Im} F(E)=0$, and E_0 is its starting point. We draw from the point E_0 a cut along this curve. The function p(E) (see (3)) maps conformally the plane E with the cut onto the half-plane $\operatorname{Im} p>0$, with vertical final cuts that emerge from points that are multiples of π . The transform of the spectrum μ fills the entire real axis, and the spectrum points E_{\pm} on opposite edges correspond to the points $\pm p$. As is well known,

$$\psi_{1,2}(x; E) = \exp(\pm i p(E)x) X_{1,2}(x; E), \quad X(x+r; E) = X(x; E).$$
 (8)

It is easy to verify that $\psi_{1,2}(x;E)$ in (8) are the values of one and the same function $\psi(x,E)$, which is analytic in E, on opposite edges of the cut. The same holds for $\chi_{1,2}(x;E)$. We express E in terms of p (E=E(p)). We denote by $\hat{\psi}(x;p)$ and $\hat{\chi}(x;p)$ the functions $\hat{\psi}(x;E)$ and $\hat{\chi}(x;E)$ expressed in terms of p. In terms of the variable p, formulas (5)—(7) become

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dp \, \frac{\phi\{E(p)\}}{F^*\{E(p)\}} e^{i p x} \, \hat{X}(x; p) \widetilde{f}(-p), \tag{9}$$

$$\widetilde{f}(p) = \int_{-\infty}^{+\infty} e^{i x p} \hat{X}(x; p) f(x) dx.$$
 (10)

$$\iint_{-\infty}^{2} f(x) dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dp \frac{\phi \{ E(p) \}}{F' \{ E(p) \}} \widetilde{f}(-p) \widetilde{f}(p)$$
(11)

 $\phi(E)/F'(E)$ and $\hat{\chi}(x;p)$ tend to unity as $p\to\pm\infty$. These formulas are useful also in the case of a real potential.

I am grateful to ${\tt B.M.}$ Levitan and ${\tt S.P.}$ Novikov for stimulating discussions.

¹N. N. Meiman, Trudy Moskovskogo Mat. Obshchestva **9**, (1960); Amer. Mat. Soc. Transl. (2), 32 (1963).

²E. Titchmarsh, Eigenfunction Expansions, Part 2, Oxford, 1958.