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We investigate the stationary distribution of nondegenerate electrons interacting with zero-point optical
oscillations of a crystal, of frequency w,, in the presence of strong radiation. We describe the singularities
that arise at definite frequencies Q0 of the light: 1) photon-phonon resonance (Q = nw); 2) discrete
distribution of the electrons with respect to the quasienergies at Q = [p+(n/m)w,, n< ml; 3) cooling of

the electrons (2 < wy).

PACS numbers: 63.20.K

1. A strong electric radiation field in which electrons
oscillate (27> 1, where 7 is the electron relaxation
time) changes the interaction between the electrons and
the phonon thermostat, so that distribution over the
quasienergies differs significantly from equilibrium.
The distribution function f(e), under the condition
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(m* is the effective mass of the electron, E is the
amplitude of the light wave), which makes it possible
to neglect multiphoton processes, is determined from
the equation
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where afle, €') = Ve 0(e’), ble, €’) = Vee'/wle +€')0(e"), ¢
=T/lwy, w=9/w,, 6= (Dy/Dop)t, k=@m*s?/T)w <1,
D,, and D,,, are respectively the acoustic and optical
deformation potentials, T is the lattice temperature, s
is the speed of sound; the dimensionless quasienergy of
the electron € is measured in units of Zw,. The first
term in the left half of (2) describes the change of f(e)
due to quasielastic scattering by acoustic phonons, the
second describes the change due to emission of optical
phonons (it is assumed that # <«<1), while the last term
accounts for the interaction with the light when optical
phonons are emitted. Equation (2) was obtained from
the quantum kinetic equation, 37 using (1) and the con-
dition 6 <1, which makes it possible to neglect the in-
teraction with light when acoustic phonons participate.
Since usually D, ~D,,,, the smallness of & follows from
the assumed smallness of £,

Owing to the intense emission of optical phonons at
e>1, the function f(€) is small in that case like y, and
can be simply calculated in terms of its values in the
interval (0,1), in which
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where a=v/kd and p =1,2,..., is the integer part of w.
Equation (3) is solved under the condition that there is
no flux, j€) =— ble, e)[t(df/de) +f(€)]=0, as e—~0 and
under the condition f(1)=0 (~y or ~e~1/%) as e~ 1; f(e)
is always normalizable in this case.

2. At the exact equality w=n=1,2,---, it follows
from (3) that f(€) =c exp(- ¢/t), i.e., the light field does
not influence the electron distribution over the quasi-
energies. At a small frequency deviation w’=w-n>0
(such that w’|df/de| <f), Eq. (3) in which one should
put p=#, has in the entire interval (0,1), with the ex-
ception of the narrower layer (0,w’), the first integral

b (e €) t%f- +f(c))—aw'b(c‘.¢+n-l)f(t) -=C. (4)
€ .

Equation (4) has a solution that vanishes at =1 for the’
lower part of the considered interval € <¢,, where ¢ is
determined from
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c

fle) = a2, (5)

aw’ble, e+n=1 «b(e € ’
and decreases rapidly at €>¢, (like a Maxwellian func-
tion). With increasing cw’, the energy ¢, increases,
and at ow’[b(1,n)/b(1,1)]= 1 the electron distribution
is described by formula (5) in practically the entire in-
terval (0,1). At w’ <0, Eq. (3), in which we now must
put p=n-1and n= 2, has the first integral (4) practi-
cally everywhere except in the narrow layer (1 - lw’},
1). A solution of (4) that satisfies the condition j(0) =

at w’ <0, starting with the smallest alw’|, is given
approximately by formula (5) with C <0, so that the
change of f(e) following the appearance of a frequency
detuning does not take place gradually (as when w’> 0),
but jumpwise.
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Arrangement of quasilevels f(¢) for n/m =4/7. The transition
at w=p+ (n/m) (with emission of p-phonons) is represented by
the vertical solid line. The dashed line represents the emis-

sion of the additional phonon.

The stationary weak-field conductivity ¢ of a semi-
conductor situated in a strong optical field is calculated

in the usual manner in terms of the function f(e). M1 Near -

w =n, the conductivity ¢ exhibits (as do other kinetic
coefficients) a strong resonant dependence on w’
(photon-phonon resonance). When the momentum is
scattered by acoustic phonons, the transition from the
Maxwellian f{e) (with ¢ <<1) to the function (5) is ac-
companied by a decrease of the mobility by a factor
~t"1/2 50 that the photon-phonon resonance should be-
come manifest in 0 by sharp peaks at w=n= 2, which
decrease rapidly on the red side and more smoothly on
the violet side,

3. The case n=1 is singular, since the frequency
w =1 is nonresonant. As seen from (4) (which can be
used on both sides of w =1 at small values of |w’{), in
the vicinity of this frequency f(€) is almost Maxwellian
with a temperature # =£/(1 - aw’), i.e., the electrons
become heated at w’> 0 and cooled at w’ <0. The latter
is typical of all frequencies w <1, since absorption of a
photon of this frequency is accompanied by emission of
a phonon with higher energy. For the cooled electrons,
f(e) can be obtained from (3), which is valid at w <1 if
we put in it p =0 and omit the next-to-last term in the
left-hand side. In stronger fields, y>> t«k6(1 ~ w)?, all the
electrons go over into the region € <1 - w, where f(€)
is Maxwellian with a temperature {. At 1-w <{ and
1>>¢> k0, the cooling is strong. The described situa-
tion differs from other models, in which absolute cool-
ing of the electrons is predicted. =%

Cooling is possible also at w’>0, if > 1 and qw’

z 1. This region is characterized by essential singulari-
ties of 0.

4. f w=p +1/2, then (3) is transformed into a system
of equations for the functions f(e) and f,(e) =f(e +1/2) in
the interval (0,1/2):
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From the boundary conditions j(0)=0, £;(1/2) =0, j(1/2)
=7,(0), and £(1/2)=£,(0) and from Eqs. (6) it follows
directly that j(e) +74(€) =j =const, 7,(0)=4, 7,(1/2)=0, and
df,/del ., ,,=0. From an analysis of (6) ate~1/2 we
find that f(1/2)=7,(0), df,/d|._,, and j are exponential-
ly small, so that f(€) and fi(e) differ significantly from
zero in the narrower interval (0, A), where A is esti-
mated as the larger of the quantities ¢ at #2/a(p — 1/2)°.
Thus f(e), which differs from zero at two “quasilevels, ”
€=0 and €=1/2, acquires at w=p +1/2 a discrete
character. The region of existence of the quasilevels is

determined by the inequalities 1>> > k8t/(p—1/2)3/2,

The system of quasilevels occurs at all w =p + (n/m),
where n/m <1 is the irreducible fraction. It includes m
quasilevels ¢,=%/m, k=0,1,...,m -1, and for the
number N, of the electrons at these levels we have

2k +n k+n
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I m_ m .
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n m

The quasidiscrete spectrum f(e) can appear only at
m<<1/t, With increasing m, the average distribution
of the electrons over the quasilevel approaches the dis-
tribution (5) at large aw’. The appearance of the quasi-
discrete spectrum f(e) is illustrated in the figure.
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