Quasienergy distribution of electrons interacting with optical phonons in an electric radiation field

F. T. Vas'ko and Z. S. Gribnikov

Institute of Semiconductors, Ukrainian Academy of Sciences (Submitted May 3, 1975)

ZhETF Pis. Red. 21, No. 11, 629-633 (June 5, 1975)

We investigate the stationary distribution of nondegenerate electrons interacting with zero-point optical oscillations of a crystal, of frequency ω_0 , in the presence of strong radiation. We describe the singularities that arise at definite frequencies Ω of the light: 1) photon-phonon resonance $(\Omega = n\omega_0)$; 2) discrete distribution of the electrons with respect to the quasienergies at $\Omega = [p + (n/m)\omega_0, n < m]$; 3) cooling of the electrons $(\Omega < \omega_0)$.

PACS numbers: 63.20.K

1. A strong electric radiation field in which electrons oscillate $(\Omega \tau \gg 1$, where τ is the electron relaxation time) changes the interaction between the electrons and the phonon thermostat, so that distribution over the quasienergies differs significantly from equilibrium. [1] The distribution function $f(\epsilon)$, under the condition

$$\gamma = \frac{1}{6\pi\Omega} \frac{(eE\Omega^{-1})^2}{m^*} << 1 \tag{1}$$

 (m^*) is the effective mass of the electron, E is the amplitude of the light wave), which makes it possible to neglect multiphoton processes, is determined from the equation

$$\delta \kappa \frac{d}{d\epsilon} \left[b(\epsilon, \epsilon) \left(\epsilon \frac{df}{d\epsilon} + f(\epsilon) \right) \right] + \left[a(\epsilon, \epsilon + 1) f(\epsilon + 1) \right]$$

$$- a(\epsilon, \epsilon - 1) f(\epsilon) + \gamma \left[b(\epsilon, \epsilon + \omega + 1) f(\epsilon + \omega + 1) \right]$$

$$+ b(\epsilon, \epsilon - \omega + 1) f(\epsilon - \omega + 1) - b(\epsilon, \epsilon + \omega - 1) f(\epsilon)$$

$$- b(\epsilon, \epsilon - \omega - 1) f(\epsilon) = 0, \qquad (2)$$

where $a(\epsilon, \epsilon') = \sqrt{\epsilon \epsilon'} \theta(\epsilon')$, $b(\epsilon, \epsilon') = \sqrt{\epsilon \epsilon'} \omega(\epsilon + \epsilon') \theta(\epsilon')$, t $=T/\hbar\omega_0, \ \omega=\Omega/\omega_0, \ \delta=(D_{ac}/D_{opt})^2t, \ \kappa=(2m*s^2/T)\omega\ll 1,$ $D_{\rm ac}$ and $D_{\rm opt}$ are respectively the acoustic and optical deformation potentials, T is the lattice temperature, sis the speed of sound; the dimensionless quasienergy of the electron ϵ is measured in units of $\hbar\omega_0$. The first term in the left half of (2) describes the change of $f(\epsilon)$ due to quasielastic scattering by acoustic phonons, the second describes the change due to emission of optical phonons (it is assumed that $t \ll 1$), while the last term accounts for the interaction with the light when optical phonons are emitted. Equation (2) was obtained from the quantum kinetic equation, [2, 3] using (1) and the condition $\delta\!\ll\!1$, which makes it possible to neglect the interaction with light when acoustic phonons participate. Since usually $D_{\rm ac} \sim D_{\rm opt}$, the smallness of δ follows from the assumed smallness of t.

Owing to the intense emission of optical phonons at $\epsilon > 1$, the function $f(\epsilon)$ is small in that case like γ , and can be simply calculated in terms of its values in the interval (0,1), in which

$$\frac{d}{d\epsilon} \left[b(\epsilon, \epsilon) \left(\epsilon \frac{df}{d\epsilon} + f(\epsilon) \right) \right] - ab(\epsilon, \epsilon + \omega - 1) f(\epsilon)$$

$$+ ab(\epsilon - \omega + p, \epsilon + p - 1) f(\epsilon - \omega + p) \theta(\epsilon - \omega + p)$$

$$+ ab(\epsilon - \omega + p + 1, \epsilon + p) f(\epsilon - \omega + p + 1) \theta(\omega - p - \epsilon) = 0,$$
 (3)

where $a = \gamma/\kappa\delta$ and $b = 1, 2, \cdots$, is the integer part of ω . Equation (3) is solved under the condition that there is no flux, $j(\epsilon) = -b(\epsilon, \epsilon)[t(df/d\epsilon) + f(\epsilon)] = 0$, as $\epsilon \to 0$ and under the condition f(1) = 0 (γ or $\gamma = e^{-1/t}$) as $\epsilon \to 1$; $f(\epsilon)$ is always normalizable in this case.

2. At the exact equality $\omega = n = 1, 2, \cdots$, it follows from (3) that $f(\epsilon) = c \exp(-\epsilon/t)$, i. e., the light field does not influence the electron distribution over the quasienergies. At a small frequency deviation $\omega' = \omega - n > 0$ (such that $\omega' | df/d\epsilon | \ll f$), Eq. (3) in which one should put p = n, has in the entire interval (0, 1), with the exception of the narrower layer $(0, \omega')$, the first integral

$$b(\epsilon, \epsilon)\left(t\frac{df}{d\epsilon} + f(\epsilon)\right) - a\omega^{\epsilon}b(\epsilon, \epsilon + n - 1)f(\epsilon) = -C. \tag{4}$$

Equation (4) has a solution that vanishes at $\epsilon = 1$ for the lower part of the considered interval $\epsilon < \epsilon_2$, where ϵ_2 is determined from

$$\int_{\epsilon_2}^1 \left(a\omega \cdot \frac{b(\epsilon, \epsilon + n + 1)}{b(\epsilon, \epsilon)} - 1 \right) d\epsilon = 0$$

is essentially non-Maxwellian

$$f(\epsilon) = \frac{C}{a\omega'b(\epsilon, \epsilon + n - 1) - b(\epsilon, \epsilon)}, \quad n \geqslant 2,$$
 (5)

and decreases rapidly at $\epsilon > \epsilon_2$ (like a Maxwellian function). With increasing $\alpha \omega'$, the energy ϵ_2 increases, and at $\alpha \omega'[b(1,n)/b(1,1)] > 1$ the electron distribution is described by formula (5) in practically the entire interval (0,1). At $\omega' < 0$, Eq. (3), in which we now must put p = n - 1 and $n \ge 2$, has the first integral (4) practically everywhere except in the narrow layer $(1 - |\omega'|, 1)$. A solution of (4) that satisfies the condition j(0) = 0 at $\omega' < 0$, starting with the smallest $\alpha |\omega'|$, is given approximately by formula (5) with C < 0, so that the change of $f(\epsilon)$ following the appearance of a frequency detuning does not take place gradually (as when $\omega' > 0$), but jumpwise.



Arrangement of quasilevels $f(\epsilon)$ for n/m=4/7. The transition at $\omega=p+(n/m)$ (with emission of p-phonons) is represented by the vertical solid line. The dashed line represents the emission of the additional phonon.

The stationary weak-field conductivity σ of a semiconductor situated in a strong optical field is calculated in the usual manner in terms of the function $f(\epsilon)$. [4] Near $\omega=n$, the conductivity σ exhibits (as do other kinetic coefficients) a strong resonant dependence on ω' (photon-phonon resonance). When the momentum is scattered by acoustic phonons, the transition from the Maxwellian $f(\epsilon)$ (with t < 1) to the function (5) is accompanied by a decrease of the mobility by a factor $\sim t^{-1/2}$, so that the photon-phonon resonance should become manifest in σ by sharp peaks at $\omega=n \ge 2$, which decrease rapidly on the red side and more smoothly on the violet side.

3. The case n=1 is singular, since the frequency $\omega = 1$ is nonresonant. As seen from (4) (which can be used on both sides of $\omega = 1$ at small values of $|\omega'|$), in the vicinity of this frequency $f(\epsilon)$ is almost Maxwellian with a temperature $t' = t/(1 - \alpha \omega')$, i. e., the electrons become heated at $\omega' > 0$ and cooled at $\omega' < 0$. The latter is typical of all frequencies $\omega \le 1$, since absorption of a photon of this frequency is accompanied by emission of a phonon with higher energy. For the cooled electrons, $f(\epsilon)$ can be obtained from (3), which is valid at $\omega < 1$ if we put in it p = 0 and omit the next-to-last term in the left-hand side. In stronger fields, $\gamma \gg t\kappa \delta(1-\omega)^2$, all the electrons go over into the region $\epsilon \le 1 - \omega$, where $f(\epsilon)$ is Maxwellian with a temperature t. At $1 - \omega \le t$ and $1 \gg t \gg \kappa \delta$, the cooling is strong. The described situation differs from other models, in which absolute cooling of the electrons is predicted. [5-8]

Cooling is possible also at $\omega' > 0$, if $\alpha \gg 1$ and $\alpha \omega' \gtrsim 1$. This region is characterized by essential singularities of σ .

4. If $\omega = p + 1/2$, then (3) is transformed into a system of equations for the functions $f(\epsilon)$ and $f_1(\epsilon) = f(\epsilon + 1/2)$ in the interval (0, 1/2):

$$\frac{dj(\epsilon)}{d\epsilon} - \frac{dj_1(\epsilon)}{d\epsilon} = -a \left[b \left(\epsilon, \ \epsilon + p - \frac{1}{2} \right) f(\epsilon) \right]$$

$$-b \left(\epsilon + \frac{1}{2}, \ \epsilon + p \right) f_1(\epsilon) , \qquad (6)$$

where

$$j_{1}(\epsilon) = -b(\epsilon + \frac{1}{2}, \epsilon + \frac{1}{2})\left(t\frac{df_{1}}{d\epsilon} + f_{1}(\epsilon)\right)$$

From the boundary conditions j(0)=0, $f_1(1/2)\approx 0$, $j(1/2)=j_1(0)$, and $f(1/2)=f_1(0)$ and from Eqs. (6) it follows directly that $j(\epsilon)+j_1(\epsilon)=j=\mathrm{const}$, $j_1(0)=j$, $j_1(1/2)=0$, and $df_1/d\epsilon|_{\epsilon=1/2}\approx 0$. From an analysis of (6) at $\epsilon\sim 1/2$ we find that $f(1/2)=f_1(0)$, $df_1/d\epsilon|_{\epsilon=0}$, and j are exponentially small, so that $f(\epsilon)$ and $f_1(\epsilon)$ differ significantly from zero in the narrower interval $(0,\Delta)$, where Δ is estimated as the larger of the quantities t at $t^2/\alpha^2(p-1/2)^3$. Thus $f(\epsilon)$, which differs from zero at two "quasilevels," $\epsilon\approx 0$ and $\epsilon\approx 1/2$, acquires at $\omega=p+1/2$ a discrete character. The region of existence of the quasilevels is determined by the inequalities $1\gg\gamma\gg\kappa\delta t/(p-1/2)^{3/2}$.

The system of quasilevels occurs at all $\omega = p + (n/m)$, where n/m < 1 is the irreducible fraction. It includes m quasilevels $\epsilon_k = k/m$, $k = 0, 1, \ldots, m-1$, and for the number N_k of the electrons at these levels we have

$$\frac{N_o}{N_k} = \frac{p + \frac{2k + n}{m} - 1}{p + \frac{n}{m} - 1} \sqrt{\frac{p + \frac{k + n}{m} - 1}{p + \frac{n}{m} - 1}}$$

The quasidiscrete spectrum $f(\epsilon)$ can appear only at $m \ll 1/t$. With increasing m, the average distribution of the electrons over the quasilevel approaches the distribution (5) at large $\alpha\omega'$. The appearance of the quasidiscrete spectrum $f(\epsilon)$ is illustrated in the figure.

¹F.T. Vas'ko, Fiz. Tverd. Tela **16**, 532 (1974); **17**, No. 8 (1975) [Sov. Phys.-Solid State **16**, 337 (1974); **17**, No. 8 (1975)].

²V.I. Mel'nikov, ZhETF Pis. Red. 9, 204 (1969) [JETP Lett. 9, 120 (1969)].

³E.M. Épshtein, Fiz. Tverd. Tela 11, 2732 (1969) [Sov. Phys.-Solid State 11, 2213 (1970)].

⁴F.T. Vas'ko, Fiz. Tverd. Tela **16**, 3478 (1974) [Sov. Phys.-Solid State **16**, 2254 (1975)].

⁵Z.S. Gribnikov and V.A. Kochelap, Zh. Eksp. Teor. Fiz. **58**, 1046 (1970) [Sov. Phys.-JETP **31**, 562 (1970)].

⁶L.D. Tsendin, Zh. Tekh. Fiz. **41**, 2271 (1971) [Sov. Phys. Tech. Phys. **16**, 1804 (1972)].

⁷Ya. B. Zel'dovich, ZhETF Pis. Red. 19, 120 (1974) [JETP Lett. 19, 74 (1974)].

⁸V.I. Ryzhii, Fiz. Tverd. Tela 15, 486, 810 (1973) [Sov. Phys.-Solid State 15, 341, 560 (1973)].