Two modes of collective excitations of a Fermi-liquid drop
and sum rules for electromagnetic transitions in atomic

nuclei
V. A. Khodel’

L V. Kurchatov Institute of Atomic Energy
(Submitted April 2, 1975)
ZhETF Pis. Red. 21, No. 11, 670-673 (June 5, 1975)

The problem of the appearance of low-lying collective excitations in a drop of normal Fermi liquid is
considered. In a quantum drop there are two collective-excitations modes, rather than one, the lower being
the analog of ordinary capillary waves and the other the analog of zero sound. It is shown that both modes

make comparable contributions to the sum rule.
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It is well known that the problem of reconciling the
experimental data with sum rules that pertain to elec-
tromagnetic transitions in atomic nuclei is the touch-
stone of the liquid-drop model. In the absence of forces
that depend on the particle velocities (and these do not
play an essential role in low-energy nuclear physics),
the sum Sy =Z(Eg - E;)Q%s, where @ =v%Y,,), which
reduces to the double commutator S; ={01Q[H, Q]10),
can be easily calculated™!!:
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where B% EB1/L is the hydrodynamic mass coefficient.
In the normalization that will be assumed below, it has
the dimension of mass, By =(3/41)M A. In classical
hydrodynamics, the sum S is accounted for by a single
transition Si“ from the ground state into the one-phonon
state, for in this model we have @ = (3Ze/4m)RL '« (a is
the phonon production operator), and
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However, the value of the mass coefficient B, deter-
mined from the experimental data on the frequencies

and probabilities of the lowest collective excitations of
the atomic nucleus, turns out as a rule to be much
larger than the hydrodynamic value. The reason for this
contradiction is that the atomic nucleus is a drop not of
a quantum liquid but of a classical liquid, and in a drop
of normal Fermi liquid there are two modes of collec-
tive excitations of different physical nature. One of them
is the analog of ordinary capillary waves. Its appearance
is due to spontaneous violation of translational invari-
ance in the ground state of the system.?! In this sys-
tem, by virtue of the general theorems,'? there always
exists a collective-excitation mode that begins with
w=0.
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A zero frequency is possessed by a dipole phonon with
L =1. The frequencies of the remaining excitations with
L #1 are positive. The origin of the low-lying surface
branch can be understood also without the help of
mathematical theorems. Let us cut out, say in the
northern hemisphere of the drop, a narrow “crescent”
of liquid and transfer it to the southern hemisphere in
such a way that no changes, apart from the shift of the
center of gravity of the drop, take place. Obviously,
in this case the internal energy of the drop remains
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unchanged-—the dipole rigidity is C, =0 and conse-
quently also w,=0. We consider now not a dipole but an
arbitrary deformation of a drop with small L. If the
system is so arranged that an external field V()
applied at the point v changes the density p of the sys-
tem only at that point, then the particles will not “feel”
the difference between the dipole deformation or any
other deformation of the surface, meaning that the
internal energy remains unchanged (to distinguish dipole
deformation from, say, quadrupole deformation it is
necessary to compare the shift of the surface at a
minimum of two surface points). Thus, in a system
where 6p(r)~ V%), all the rigidities C, will be equal to
the dipole rigidity C,, and consequently all the frequen-
cies wy; =0, We note that all the transition densities—
the form factors v, (») of collective states—will also
coincide with the dipole form factor v, (r)=ap/ar.
(This, incidentally, is indeed the hydrodynamic form
factor.) Of course, the relation 6p(r)~ V() is
idealized. Even in the classical theory, where the
quasiparticle mean-free-path is small, the change of
p(¥) is determined by the value of the field V'(»') in

the vicinity of | —#']~»; (v, is the average distance
between the particles). Therefore the pure shift and
deformation of a surface with L # 1 become nonequiva-
lent, rigidity appears, and the degeneracy is lifted. It
is easy to trace this fact directly in the equations, by
writing down, for example, the equation for the form
factor vt4
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Here dT=v2dr, A (r,7’) is the standard particle-hole
propagator
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and 7 is the local interaction of the quasiparticles.

AtL=1, Eq. (1) has a solution'® w, =0, v,(»)
=3p/dt. The liquid drop is homogeneous and therefore a
surface solution of the type 3p/3r is possible only if the
interaction inside is 7™ >0 (on the outside, the sign of
7 is always negative, corresponding to attraction). In
the positive case (71" <0), the solutions v, = ap/ar of (1)
will be of the volume type, i.e., they will describe not
a drop but certain other systems. We can state the
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1o11o0wing: the gas irom which the drop 1s 1ormed, with
attraction between particles, is compressed until the
local interaction 7" becomes positive. If the functions
A(r,r’) and J(r,r’) were 6-functions, then we would
have 8p(r)~V®(r), the integral (2) would not depend on
L, all the frequencies wy would vanish identically, and
v (¥)= v (r)=3p/dr. This, of course, is not the actual
case, since A(r,r’) is not a 6-function and w,#0 at

L #1. Actual calculations show that the frequency w;
of these oscillations—quantum capillary waves at

L ~1—1lies below the corresponding single-particle fre-
quencies w3, and therefore oscillations with small L
are not damped. [The lifting of the degeneracy depends
on the behavior of A(r, r’) over distances (r-r’) > r,
and is entirely different in the quantum and classical
cases. | But the classical surface peak of width ~7; in
v.(r), which is due to the coherent contribution of all
the particles, remains also in the quantum case,

In a quantum drop there is one more collective-ex-
citation mode, which is not connected with the surface
oscillations. It exists also in a secured surface of a
system, particularly in a gas of interacting particles
that are locked in a potential box. At T =0, the quasi-
particles closest to the Fermi surface have a practi-
cally infinite time 7. Giant resonances have frequencies
wZ€,A/3 i e., the relation wT>> 1 is satisfied. These
are thus zero-sound excitations. Giant resonances con-
stitute the start of the zero-sound mode of collective
excitations of a large system.

If the propagator A(r,, r,) were local, the two modes
would never be intermixed. However, A has also long-
range componentst! and as a result the real observed
excitations are mixed.

In particular, in the form factor v, (r) of the lowest
excitation there appear, besides the surface peak, also
volume components (i. e., the quantum liquid becomes
compressible). 2! An analysis shows that the quantum
motion is also solenoidal. This mode can be called
quantum capillary waves or “capons.” By virtue of the
solenoidal character of the motion, the mass coeffi-

cient 5 for the capon™ is larger than the hydrodynamic
one, and consequently the sum S; is not restricted to a
transition with excitation of a “capon”. But at a given
L there is one more collective (volume) oscillation,
namely giant resonance. Its collectiveness is of the
order of A%/3 (the number of particles in a layer

~ex A™'/? near the Fermi surface), and consequently
[inasmuch as (E; - E;) ~ez A"'/?], its contribution to the
sum Sy, is of the same order as the contribution of the
lowest excitation. The contribution of this state to the
sum rule can be estimated and one can use more
rigorously the condition for the normalization of the
phonon production amplitudet*!

(g,_ js-’- g,_) --1 3)

and the definition of the excitation probability w
=(VyArg )

Using the smoothness of g, (), we obtain from (3) the
estimate 72 ~e2 A 3w, w~ (g)2(A2R?*L/e}), and SP’
~RAV3 e, S and % are the same order of
magnitude. Thus, in a quantum drop there are two
different excitation modes, the lower being the quantum
analog of the hydrodynamic mode and the other being the
zero-sound mode, and both make comparable contribu-~
tions to the sum rule, i.e., a Fermi-liquid drop is, as
it were, a hybrid of a classical drop and an interacting
Fermi gas.
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