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The lines of force of a stationary two-dimensional random magnetic field do not
give rise to percolation. Percolation appears along thin filaments in the presence of
a weak constant field. Turbulent heat conduction with almost two-dimensional
motion of the fluid is discussed.
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Interest in magnetic lines of force, defined by the equation
dr=B(r)da (1)

{a is an arbitrary scalar parameter), reviving Faraday’s ideas, has arisen in the last 10
years primarily in connection with the theory of controlled thermonuclear reactions,
"as well as in connection with problems in astrophysics, where the field is frozen into
the plasma, and the plasma defines a natural system of coordinates, in three-dimen-
sional space, in which the (pseudo} vector B, instead of the tensor F;, of Minkowski
space, is defined.

We shall examine the problem of the properties of magnetic “lines of force.” One
of the most important questions here is: Do these lines extend over an infinite distance
without interruption in any direction? This formulation of the problem is called the
percolation formulation. The word “percolation” suggests a flow. We can imagine thin
tubes, instead of lines of force, filled with liquid and we can ask the following question:
Does this system of tubes permit transferring liquid over an infinite distance? The
percolation formulation of the problem supplements the problem of linkage of lines of
force developed in detail by Moffat' and others.

Percolation along magnetic lines is interesting primarily because charged particles
move along these lines along spirals.

The thermal conductivity of a thermonuclear plasma due to diffusion of electrons
also depends on the properties of the magnetic lines of force and the surfaces on which
they coil.

In particular, Kadomtsev and Pogutse” examined a three-dimensional problem, in
which a weak random two-dimensional field b(b,, b,, 0) is superimposed on a strong
constant field oriented along the z axis, B(0,0B,). Diffusion and heat conduction are
determined by the distortion of the lines of force, which depends on b. In their paper,
the field b is expressed with the help of the two-dimensional scalar &, i.e., the z compo-

nent of the vector potential a(0,0,¢ )
L= 00/0y, by=-6¢/ax. (2)
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The lines of force in the x, y plane circumscribe the maximum in ¢ in the counter-
clockwise direction, and they circumscribe the minimum in ¢ in the clockwise direc-
tion.

When ¢ does not depend on time or the third coordinate z, Kadomtsev and
Pogutse” reduce the problem to the percolation properties of a random function of two
variables.

We shall use the notation and the normalization
<$>=0, <¢*>=1. (3)

We shall also assume that ¢ is a sufficiently smooth function with sufficiently low
correlation at large distances and a Gaussian probability distribution. In spectral lan-
guage, this corresponds to a Fourier expansion of ¢ with random phases and ampli-
tudes ¢,, such that, for example,

<¢r> ~exp(—hYkS) k>ko; <@3> ~(kfko/*", n>0, k<ko. 4)

A natural assumption, used in Ref. 2, is that regions with ¢ > ¢ (where € > 0), which
occupy less than one-half of the entire area, form isolated “islands,” along which
percolation occurs. We can introduce the quantity / (€], which characterizes the average
size of an island or the average length of an isoline, which bounds the island.

In the two-dimensional problem, when the plane is separated into two types of
regions, it is natural to assume that when regions of the first type form isolated islands,
then regions of the second type form a continuous ocean. Correspondingly, the condi-
tions ¢ <€, € >0 determine a single region, along which percolation occurs.? The
quantity € = 0 is a critical value. We can introduce the quantity / (¢), which character-
izes the average size of an island or the average length of an isoline ¢ = ¢, bounding an
island.

The function / (€) is estimated in Ref. 2 and it is further proposed that an appropri-
ately averaged quantity /(€) plays the role of an effective free path in the theory of
diffusion and heat conduction.”

In the case of plasma devices with a strong longitudinal field B, = B,, there is no
basis for assuming that small perturbations, i.e., b, do not depend on z and/or on time
and, in this case, the general idea of Ref. 2 is correct. In this paper, we shall examine,
however, a highly idealized problem: 1) either the field B, oriented along z, is entirely
missing or periodic boundary conditions are imposed along the z axis z =z 4 27R,
describing a torus with large radius R with the z axis oriented along the circle of the
torus; 2} the two-dimensional field b is entirely independent of z and ¢; and, 3) particles
move along lines of force; in addition, we assume that the Larmor radius r of the spiral
traced out by the electron is equal to zero and we ignore collisions and other effects
that can cause the electron to jump from one line to another.

After this far-reaching idealization, we obtain a result that is exactly opposite to
the assertion made in Ref. 2: electron diffusion does not occur in a two-dimensional
random field and the coefficient of diffusion is equal to zero.

The significance of the result lies in the fact that the electron orbits in the x, y
plane are closed. Let us fix an initial smooth distribution of the electron density » and
the electron temperature 7. Motion along a closed orbit leads to averaging over the
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entire orbit, but to nothing else. In this approximation, the average values 7, T on
different orbits remain different for all time.

Another formulation of the problem consists of examining a layer of finite thick-
ness, for example, 0 < x <a, in which the random two-dimensional magnetic field be-
ing examined is present. There are no currents flowing along z and creating the field b
either to the right or to the left outside this layer.

We fix one value of n, to the left (x = 0} and another n, to the right of the layer
(x = a). The flux of particles is

(fx=D(n1—n2)/a ()

according to the definition of the coefficient of diffusion. However, in the problem
under study, as the thickness of the layer a is increased, the fraction of orbits that are
open decreases, since the boundaries x = 0 and x = a intersect them. For this reason,
the particle flux decreases more rapidly than a ', either as @ ™ (m > 1) or exponen-
tially as exp( — ak, a). But this means that there is no definite value of D and, in the
limit of large a, the effective value of D approaches zero.

A finite (nonzero) value of D is obtained with a finite Larmor radius r.

In the analogous problem of two-dimensional, rotational, divergence-free station-
ary motion of a liquid, the turbulent coefficient of diffusion is finite only if the coeffi-
cient of molecular diffusion u is finite (nonzero). In this case, D is proportional to a
fractional power of p.

The problem of two-dimensional stationary motion is, in this respect, similar to
the problem of one-dimensional nonstationary motion.> An analogous similarity
between caustics with an equal number of variables (for example, x and ¢ or x and y)
was noted in Ref. 4.

In a truly three-dimensional stationary problem, just as in a two-dimensional
nonstationary problem (three variables x, y, z or x, y, t}, electron diffusion along mag-
netic field lines D,, just as turbulent diffusion in hydrodynamic motion D,, differs
from zero and, in the limit, £ =0, 7 =0.

Let us examine, for example, the nonstationary two-dimensional problem with
arbitrary discontinuous dependence on time. The particle moves along a closed line of
force around a single center within some time 7, and moves over a definite distance
(not exceeding the orbit even for large 7,). However, in the next time interval 7,, the
particle moves along a new trajectory that is independent of the first one.

In this case, after several steps, the displacement evidently increases in proportion
to the square root of the time, i.e., according to a typical diffusion law.

In the three-dimensional stationary vector field, there are regions of closed lines
(Kolmogorov, Arnol’d, and others), but these regions by no means fill the entire space,
and there also exists a finite fraction of percolation lines, along which transport occurs
from — s t0 + oo in any direction in a random field.

The general relation between the role of y, r in the two-dimensional (2D ) and
three-dimensional (3D ) cases is apparently the same as in the theory of the fast and
slow dynamo.’ The quantities D, and D, in the limit &, » — 0 depend (2D ) or do not
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depend (3D ) on w, r, but in order to construct the complete picture and, especially, to
find the gradients, in the smallest scales, the values of » and i are always important.
The dependence of the field on z and ¢, the influence of u, , as well as electron drift in
this case are examined in the second part of Ref. 2.

We shall briefly consider the problem of a two-dimensional field, consisting of
two parts: a constant field and a random field. The weak random field only distorts the
lines of force of the constant field. In separate locations, where the random field is
sufficiently strong, islands of closed lines of force, similar to local catastrophes, which
are related to the appearance of a local maximum in ¢ and to the saddle point associat-
ed with it, are separated. The opposite case, in which a very weak constant field is
superimposed on a fixed random field, is interesting.

It is well known that in this case the magnetic flux corresponding to the constant
field is compressed into narrow strips (channels), flowing through (creating percola-
tion) the medium, in spite of the tortuousness, in the direction of the constant field. In
these channels, the modulus of the ficld is of the order of the mean square random
field; the smallness of the constant field is manifested in the fact that the channels are
narrow.

This assertion, which was made by Rosenbluth,” sheds light on the fact that the
nature of the Fourier spectrum in the case of a random field affects percolation and
diffusion.

Let us return to the case of a random field in a strip of finite width. For this strip,
the wave vector k,;, =a ' corresponds to a field which is essentially indistinguish-
able from a constant field. If ¢, ~k ™, then b, ~k ™+ ! and we obtain the modulus of
the field, constant within the strip, from the condition

-1

— a
b=(<b} >y WP~ (1 KT kd)E a2 (6)

Percolation along channels, which do not decrease with increasing @, occurs for
m = — 2. The two-dimensional magnetic field arises in the presence of currents flow-
ing along the z axis; furthermore it is evident that 4¢ =j,.

Therefore, m = — 2 in the long-wavelength part of the spectrum of ¢ corre-
sponds for currents to (J,), = k °¢; = k° = const, i.e., to white noise. Thus, it is in-
structive that random currents, which is often taken to mean precisely uncorrelated
currents, i.e., those with the spectrum of white noise, produce, due to the long-range
action, average fields which are still accompanied by percolation in the limit a — oo.
The percolation disappears only when m> — 2, ie, in the case of anti-correlated
currents.

We note finally one more particular case. Let us imagine a constant field in a
perfectly conducting liquid. The motion of this liquid amplifies the field. Flux conser-
vation is related here to the fact that with random twisting of the field, the average
cosine of the angle between the field and the initial direction approaches zero. As long
as the condition for a frozen field is satisfied, the lines of force do not break: percola-
tion remains intact. The picture of narrow channels in this situation arises only over a
sufficiently long period of time after the motion begins. In this picture, electrons
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located near closed lines move only together with the general hydrodynamic motion of
the liquid, whereas the characteristic velocity of the electrons in the channels is much
higher.

I thank B. B. Kadomtsev, S. M. Kozlov, S. A. Molchanov, O. P. Pogutse, and D.
D. Sokolov for instructive discussions.

UThe notations b and ¢ differ insignificantly from those used in Ref. 2.

21t has not been ruled out, however, that part of the region with ¢ < € forms lakes inside the islands, which
are not related to the percolating ocean.

*'We note, however, that the length of an isoline / (€] for fixed € has a statistical distribution and /~¢" >* is
more likely an estimate of the maximum, rather than of the average value of /. )
#1 am grateful to B. B. Kadomtsev for bringing this point to my attention.
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