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It is shown that the quantitative parameters of the previously developed' statistical
theory of oscillatory evolution of cosmological models in the proximity to
singularity can be calculated in exact manner.
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The oscillatory mode of approach towards the singularity was first discovered for
the homogeneous vacuum cosmological model of Bianchi type IX (see Ref. 2). The
character of the evolution of a model can be described by indicating three “scale
functions” a(t ), b (¢ ), c{r) which determine the temporal evolution of the lengths in three
different directions in space. The oscillatory mode consists of an infinite sequence of
successive periods (in Ref. 2 they were called eras) during which two of the scale
functions oscillate and the third one decreases monotonically. On passing from one era
to another (with decreasing time ¢ ) the monotonic decrease in transferred to another of
the three scale functions. The amplitude of oscillations increases during each era but
the increase is especially strong on passing from one era to another; however, the
product abc decreases montonically—approximately as t. The eras become condensed
with #—0; an adequate temporal variable for description of their replacements appears
to be the “logarithmic time” 2. = — Inz.

We denote by k,, &y, ky,... the “lengths” of successive eras (measured in terms of
the number of oscillations they contain), beginning from a certain initial one. It turns
out that this sequence of the lengths is determined by a sequence of the number x_,,
Xy X1, X5, (0 <X, < 1), each of which arises from the preceding one by the transforma-
tion

X, = {1/x ) (1)

where the curly brackets denote the fractional part of the number. The lengths k,
= [1/x,_, ], the square brackets denoting the integer part of the number. It was
pointed out by 1. M. Lifshitz and the two of us’ that the law of replacements of the
lengths of the eras according to (1) leads to an important property: spontaneous sto-
chastization of the behavior of the model on approach to singularity (£ = 0) and the
“loss of memory” of the initial conditions, prescribed at some instant of time t = £,> 0
(this paper is cited henceforth as I).

The importance of the oscillatory evolution in the homogeneous models stems
from the fact that this model serves as a prototype for construction of a general
inhomogeneous solution of the Einstein equations (in the neighborhood of the singu-
larity); the relevant work has been recently reviewed in Ref. 3. Although the inhomo-
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geneity and the presence of matter give rise to the appearance of certain new feawures
{rotation of the axes to which the scale functions a,b,c refer), the law (1) remains
unlatered. Thus, stochasticity in the vicinity of the singularity appears to be a most
general property of cosmological models based on the classical Einstein equations.

The knowledge of the source of the stochastization makes it possible to construct
with a considerable completeness a statistical theory of the evolution of the cosmologi-
cal model in asymptotic proximity to singularity. However, for a calculation of param-
eters of this theory an approximate method was devised in I, the degree of exactness of
which is difficult to estimate beforehand. The aim of the present work is to show that
these parameters can be calculated exactly.

The starting point of the theory is the formula due to Gauss, w(x) = 1/(1 + x) In2,
which determines the probability distribution density of the values of x,=x in the
interval [0,1] after many iterations of the transformation (1) (as we shall speak—in the
stationary, i.e., independent of s, limit)". Hence follows the formula

(k)= _1__1 M
In2  kk+2)
for the probability distribution of the integer values of the era lengths. This function
decreases with k— oo merely as k ~2; such slowness makes it necessary to use logarith-
mic physical quantities in order to obtain for them stable statistical distributions and
mean values.

The basis of the following analysis constitutes the recurrence formulas (obtained
in I) for successive eras:

Q,, /R = 1+8k(k +x +1/x )= exp,, )
k/x +1}8
ooy = 1- (g%t 12 ; (3)
1+6sks(ks+xs+l/xs)

They are valid in asymptotic limit when Inf2 /20 [in I formula (5) was given with a
misprint in the denominator]. Here £2, is the instant of the beginning of the sth era; the
quantity &, is the measure (in units of £2,) of the initial (in the same era) amplitude a,
of the oscillations of the logarithms of the scale functions (Ine, Inb, Inc): a, = 5,02,
(0<o,<1). The quantity &, has a stable stationary statistical distribution P(§) and a
stable (small relative fluctuations) mean value. For their determination in I was used
{(with due reservation) an approximate method based on the assumption of statistical
independence of the random quantity &, of the random quantities k,,x_. Now an exact
solution of this problem is given.

Since we are interested in statistical properties in the stationary limit, it is reason-
able to introduce the so-called natural expansion of the transformation (1) by continu-
ing it without limit to negative indices. Such a “doubly-infinite” sequence X = (...,x_,,
Xo» X1, X,-..) is uniform in its statistical properties over its entire length (and x, loses its
meaning of an “initial” condition). The sequence X is equivalent to a sequence of

92 JETP Lett, Vol. 38, No. 2, 25 July 1983 Lifshitz et al, g2



integers K = (....k_, ko, k,, k,...), constructed by the rule k, = [1/x,_, ]. Inversely,
every number of X is determined by the integers of K as an infinite continuous fraction

xo= 1 (g, 41/ Gy, +1/ (K, +. .. )= x?

§43

We also introduce the quantities which are defined by a continuous fraction with a
retrograde sequence of the denominators

x; = 1k, _, +1/(k _, AR VA (T S B

By means of some rearrangements (3) can be brought to the form

xs (1 —5“‘)/5“ ' 1/ (ks+xs-| (l _"8s)/ as)'

Hence by iterations: x,(1 — &, {)/8,,, =x,, and finally 6, = x,* /(x;* + x;7).
The quantities x,* and x;” have a joint stationary distribution P(x*,x~) which
can be found starting from the joint transformation
X;+l={ l/x; 1 xs‘H =1f ([l/x;]+xs_). (4)

In contrast to (1) it is a one-to-one mapping (in the unit square of variation of x* and
x 7). Therefore the condition for the distribution to be stationary is expressed simply
by the equation

By %, )= Bt X )0 % )
where J is the Jacobian of the transformation (4). The normalized solution of this
equation is

Px",x )=1/(1+x"x )In2 (5)

[its integration over x* or x™ yields w(x)]. Since &, is expressed in terms of x,* and
x., the knowledge of (5) makes it possible to find the distribution

P@)=1/(I1-281+1)In2. 6)
The mean value (§) = 1/2 already as a result of the symmetry of this function.

According to I the “doubly-logarithmic” time interval for a succession of a given
number s of eras is 7,=In(f2, /) = X £, (summation from p = 1 to p = 5). The mean
value (r.) =s(&). The expression of £ from (2} can be reduced to the form

Es= Ln(-ss/( 1 —5s+ l)xs— 1 Xs ).
Since (Ind,) = (In(1 — &, ,)) and (Inx, _,) = (Inx,), we obtain
<E>=-2<lnx> =n?/6In2= 2,37.
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For large s the values of 7, are distributed around (r,) according to the Gauss
law with the density

p(rg)=(2nDy" *exp { - (r,- <7,>)/2D} (7

(see 1§4). The calculation of the variance D is more complicated since it demands not
only the knowledge of (£ ?) but also the mean values (£, £, ) (which actually depend
only on the difference p = |p; — p,|). It appears to be useful to rearrange the terms in
the sum 2£, and omit the terms which do not increase with 5. Thus one can obtain

2 &= 2 ln(l/x;r Xp )EZ%

The variance

p=s{r) @y +2 5 (mm,) ~ ).

p=

The mean value (1) =(£), and for the mean square one can obtain
(%*) = 9¢(3)/2 In2 = 7.80. Without taking into account correlations we would obtain
D =2.17s. By taking into account correlations with p = 1,2,3,4 (calculated with an
electronic computer) we arrive at the value D = (3.5 4+ 0.1)s.

YThe regular evolution of the model according to the rule (1) can be interrupted by the appearance of
“anomalous” eras (which were called in Ref. 2 the case of small oscillations). However, it is important that
in the asympotic vicinity of the singularity (as #—0) the probability of occurrence of such “dangerous”
cases tends to zero, as was proved in I§4.

PThe reduction of the transformation to the one-to-one mapping was used alredy by Chernoff and Bar-
row*—for other variables and without applications to the problems considered here. As to the preceding
papers by Barrow,” they contain nothing beyond the main idea ({taken from I) about the connection of
stochasticity in cosomological models with the transformation (1) and with the distributions w(x) and W{k)
(and the repetition of some well-known statements of the general ergodic theory).
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