Erratum: Undulator radiation of relativistic electrons in a polydomain ferromagnetic [JETP Lett. 36, No. 9, 408–411 (5 November 1982)]

G. M. Genkin and V. V. Zil'berberg NONE

(25 July 1983)

Pis'ma Zh. Eksp. Teor. Fiz. 38, No. 2, 84 (25 July 1983)

PACS numbers: 61.80.Mk, 75.90. + w, 99.10. + g

In the paper of G. M. Genkin and V. V. Zil'berberg, published in Vol. 36, No. 9, the authors missed the following misprints: 1) In Eq. (2) γ^{-2} should be substituted for s^{-1} , $(1 - n_z \beta)$ should be substituted for $(1 + n_z \beta)$, and $\omega(1 - n_z \beta) - k\Omega_0$ should be substituted for $\omega(1 - n_z \beta) - \Omega_0$. 2) The paragraph in which Eq. (4) appears should read as follows:

Comparing the maximum spectral density³ under the conditions corresponding to channeling I_k with the spectral density of the undulator I_0 in the undulator's frequency band, we find

$$\frac{I_0}{I_k} \sim \frac{\omega_c^2}{\Omega_k \Omega_0} \left(\frac{c}{R \Omega_k} \right)^2 \frac{M}{3\gamma^{1/2}} . \tag{3}$$

Although the ratio of the total radiation power is independent of γ , the ratio of the spectral densities is $\sim \gamma^{-1/2}$. Equation (4), we might note, ignores the additional damping factor representing the electrons that reach the channeling level. Assuming it to be⁴ $(R/a)\sim 10^{-1}$ for planar channeling and for $B_0\sim 8\times 10^3$ G (Mn-Bi, Ni-Fe), $\lambda_0\sim 1$ μ m, $M\sim 100$ for $\Omega_k\sim 10^{-16}$ s⁻¹, $R\sim 3\times 10^{-9}$ cm, and $\gamma\sim 25$, we find $(I_0/I_k)\sim 0.1$. 3) In the abstract and in the final paragraph the sentence "Under certain conditions this radiation has a higher power than the radiation of a channeled particle" should be omitted.

The authors thank L. A. Gevorgyan for bringing these errors to our attention.