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A new parametric-instability branch has been found for a semi-infinite plasma ina
weak rf field. This instability occurs over a broader range of frequencies of the
external field than the instability branch identified previously.

PACS numbers: 52.35.Py

The threshold external field for parametric instabilities involving surface waves in
a bounded plasma is much higher® than that for the parametric excitation of plasma
waves in an infinite plasma.! The reason for the difference lies in the rapid Landau
damping of an rf surface wave,” with a damping rate higher than the frequency of ion
acoustic surface waves. The parametric interaction of an rf field with a bounded plas-
ma is therefore caused by the excitation of quasistatic rf surface waves and of some
low-frequency waves which are not natural waves of the plasma.* A detailed study of
the parametric instability of a bounded plasma in an alternating electric field is impor-
tant for correctly interpreting experiments,” for determining the conditions under
which the effect can be exploited, and for determining the nature of the parametric
excitation of surface waves in a semi-infinite nonisothermal plasma.

The particular characteristics of the parametric instability of a bounded plasma
stem from the circumstance that this instability can proceed by two paths. The first is
closely associated with the existence of a plasma boundary.* The second arises from
the interaction of the rf and low-frequency waves in the nonuniform pump field. To
prove this assertion is the purpose of the present paper.

We put the interface between the plasma and a dielectric in the xy plane. The
plasma fills the half-space z>0, while the dielectric fills the half-space z <0. We work
from the equations of two-fluid quasihydrodynamics and Maxwell’s equations. The
electron temperature T, is considerably higher than the temperature of the singly
charged ions, 7; without any loss of generality, we can set the latter temperature
equal to zerc. An alternating electric field E, = (E,,, 0, 0) is applied to the plasma
boundary. This field varies over the time ¢ at a frequency o, which is approximately
equal to the limiting frequency of quasistatic surface waves, w,.(1 +€,)” Y2 where €,
is the static dielectric function of the dielectric, and @, is the electron plasma frequen-
cy. Linearizing the original system of equations with respect to small amplitudes of the
waves that are excited, we find the following system of equations and boundary condi-
tions for the field amplitudes of the fluctuational waves:
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where H'*= " and HF " are the magnetic ficld amplitudes of the rf waves in the plasma
and in the dielectric. The superscripts + and — specify the waves which are propa-
gating in the positive and negative directions in the z = const plane, while the asterisk
denotes the complex conjugate. Fourier transforms have been taken in the variables x,
», and t; 2 is the frequency of the low-frequency wave; and the rest of the notation is
explained by

2 2 2
k? =k? — w} €o/c?, K; = k* —wp ed/c )
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= Thmy,  @=l-(wl /b)), K =ki+kj, V=0 A=)~

The braces denote the discontinuities in the enclosed quantities at the z = 0 interface;
6n'*) = nybdn'*! is the variation of the plasma density in the low-frequency wave; and
¢ and ¢ ) are the potentials in the plasma and in the dielectric. Solving Egs. (1),
and using boundary conditions (2), we find expressions for the fields of the rf surface
waves in terms of the pump field and the density variation §n*. Substituting these
expressions into Eq. (3}, we convert it to

n®(z) + N afz) f°° 81 (s) afs) ds = C; exp (— KZ), (6)
0
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and C, is an arbitrary constant. System of equations (1) and (3), which is a system of
coupled second-order differential equations, has thus been reduced to a single Fred-
holm integral equation with a self-adjoint kernel a(z)a(s). We assume that 4 is not a
characteristic number of the homogeneous integral equation corresponding to Eq. (6);
then Eq. (6) has a unique solution for an arbitrary value of the constant C,:

Na(z) | A=1+ ~__7\_a__¢ 0. (7)
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We find the potential ¢ ‘™’ from Eq. (4), using (7):
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+ C, exp (— kz), ¢((;)= Cs explkz).

We set" C, = 0 and substitute ¢ ™ and ¢ ;"' into boundary conditions (5). As a result,
we find the dispersion relation of Ref. 4:

"s("d +x +xs)

2 2
xsk

=N [(Ko+K) ¥~ K217 (ko + k) A7 (8)
We now assume that A is equal to a characteristic number of the homogeneous version
of Eq. (6).

A= Ap == 2(Ko +K). 9

The eigenfunctions of the kernel a(z)a(s) corresponding to the characteristic number A
are

571(:)= CoXea(z), (10)
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Since eigenfunctions (10) are not orthogonal to the right side of Eq. (6), they are
solutions of this equation only if C| = 0. We assume C; = 0. Substituting (10) into (4),
we find the potential

m, Aa(z) .
¢§) = - —e‘LQ 2C4?’;;:(—K—)2—_—k—2"‘ C,, €xp(—kz), (]5;*)‘—‘ Ci.exp(kz).
Boundary conditions (5) determine the relationship among the constants C,, C,,, and
C... The solutions for the dimensionless variation of the plasma density, 5n.", and for
" the potential ¢ |’ are not eigenfunctions for either the plasma or the plasma-dielectric
interface. These solutions therefore hold only if dispersion relation (9) has solutions
with Imf2 <0 (an instability). In the opposite case (Imf2::0), we should set C, =0.
Analysis of dispersion relations (8) and (9) shows that the threshold external fields for
the instabilities with the growth rates ¥, and ¥, found from Eqgs. (8) and (9), respective-
ly, are the same:

|Ey 2 % k?
(4] = ’Y (1 + ed)?‘ljl
32mny Te 2

pe k2

12

The maximum growth rates ¥, .., and ¥, ... at field levels well above the threshold

are
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The equations § + 8, , = F ¥ determine the wave numbers of the rf surface waves.
Taking T, =1 eV, ¢, = 10, (kc/w,,) = 2.5, we find ¥, = 1.2 y,; i.e., the quantitative
difference between ¥, and ¥, is small. The primary distinction between the two instabi-
lities is that the surface waves with the growth rate y, can be excited either at wy, S w,,
Or at wyRw,, while the instability with y; can occur only if w,50, =0,
X(1+€,)7 1

YThe condition C, == 0 is required for the limiting transition to ion acoustic dispersion at a zero amplitude of
the pump field.
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