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The low-frequency region 0 <@ < {T'), in which the one-dimensional {1D)
conductivity is described by the law o(w) « "™, is found for low temperatures
T<1/7 (ris the free time of flight). The exponent s{w, T} varies from zero for @ — 0
to one for w—w,{T'). At higher frequencies, @ > w,{T), the 1D Austin-Mott
conductivity o{w) < o T In*(T /w) occurs.

PACS numbers: 72.15.Nj

In a 1D disordered conductor, all electronic states are localized."?> We are exam-
ining the case of weak localization, when the Fermi level €, > 1/7, which corresponds
to the experimental situation discussed below. It is assumed that the 1D nature of the
electron motion is due to metallic chains with defects packed into a three-dimensional
crystal. Since the dielectric constant is very high in such systems (of the order of
several hundreds), the long-range Coulomb repulsion can be ignored. At low tempera-
tures 0 < T¢1/r the dc conductivity is initiated by phonons. It is usually assumed 3~
that the probability (per second) of a hop out of one localized state €, into another ¢,
ifs,, =f{e, —ep|+1e, —€r| + 16, —€, 12T >1, is

1 -

Uty = Ve S S L (1)

where v, is a phonon frequency, and £,,, = z,,, /7 is the distance between states scaled
to the localization length, which in 1D coincides (see Refs. 6-8) with the free path
! = v, 7. Equation (1) takes into account only the exponential dependence on §,,, and
3,,.- The electrical resistance between the nearest states v, , which is proportional to

T 18R, =R, e, Optimization of the hopping distance in (1) leads in the d-dimen-
sional case to the Mott law **° for the conductivity

o(w =0) = ggexp| —(To/T) /(41 . 2
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However, such optimization is not applicable to an infinite chain (d since the

rare, high-resistance sections are the main contribution to the resistance.

Our purpose is to find the 1D low-temperature conductivity of a disordered me-
tallic chain with exponential accuracy with respect to temperature. In the limit @—0,
the conductivity must become a dependence of the type (2), taking into account Refs.
10-12, while at higher frequencies it must agree with the Austin-Mott equation'>*”

0 (W) o wT[ln(vph/w)]“d , (3)

which corresponds to Debye losses due to hops within a pair of levels (pair approxima-
tion). We note that one-dimensional hopping conductivity is still studied in the litera-
ture (see Ref. 14) only for weakly or strongly compensated semiconductors, when in (1)
§wu = & + &/T (R percolation). For this reason, our results are qualitatively differ-
ent in nature.

It is shown in Refs. 6-8 that the states v, u are statistically independent and are
distributed according to the Poisson distribution if £,, >2In(8/7(€, — €, |). Under
these conditions it is possible, according to Ref. 10, to derive the probability distribu-
tion for the quantities £,,, corresponding to neighboring states near the Fermi level

2k [ &

W) = expl- ). @
TR

where £2 = [V(E;)TI]™' = #/(T1)>1 is the area per state in the space of the dimen-

sionless variables &, §. We note that in Ref. 12, for obscure physical reasons, a numeri-

cal factor @~ 10 was erroneously introduced into the exponent in (4).

In a dc current, an electron successively overcomes all of the smallest resistances
R,, , forming an infinite cluster. At @0, an electron moves in one direction for a
finite time 7/w (half-period), and then moves in the opposite direction. Therefore, the
chain contains “impassable” resistances (at a given frequency) for which 7, > 7/w,
ie, §,, >§ (w), where

Hw) = In(y,, /). (5)

These ‘“‘impassable” resistances separate the chain into clusters that are accessible to
electron motion. When £ (o) is less than the average distance between levels &, the pair
approximation is valid. We are examining the lower frequency range

m

w< wyfT) = Yon exp[ﬁ(_ﬁ )1/¢] | 4

in which £ (@)> &, and the clusters contain many states. The average length of a
cluster is defined as

Tr. Yph
(=] 22 (w) *(? In 75-—) (7)
L{w) =1t/ [ dEW(H=lEexpl—5 | © w

E(w) 0

and the average ‘“‘passable” resistance as
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E(w) E(w)
SR>, =[ dEW(HRoexp®) / [ dEW(E). 8)

For an infinite chain, the conductivity is determined from (8). With exponential accu-
racy, we find

£(w)
o(@) = oo /[ dEexp(k -8 /82) 9)
Two characteristic regimes are possible in (9). When & (w) < £2/2, ie.
n
© > wolT) = vy exp<— Z—T-T) (10}

the region near the upper limit makes the main contribution to the integral in (9},
which leads to

Tr, "V
vw) (1-Fm2) )
5 « W .
&
In the region £ (@) < £,, where the pair approximation is valid, the exponential in (9’)
should be ignored. Thus the frequency dependence matches the linear frequency de-
pendence (3). [We recall that o, in {9) is a nonexponential function of temperature.] On

the other hand, for @ < w(T") (£ (@) > £ 3/2) conductivity (9} no longer depends on fre-
quency and conforms to the activation law!'®!!

o(w) =(w /vp p)00eXP (

T
= goexp( — — |- 9"
0(w) oCXp ( 4rT ) (9”)
We shall briefly examine the conductivity of a chain of finite length L. As the
frequency is reduced to

P L 1/2
o ool - [0 )| "

the average length of a cluster L () becomes equal to L. Therefore, results {9), (%), and
{9") are valid for @ > (L ), while for @ < (L) the conductivity of an average chain is
constant and equal to o{w(L }). For very long chains with (L } < wy(T ), this limitation is
not important, since the activation law (9”) is already in force at frequencies w ~w,(T ).
But, a different dependence arises if (L } > w(T}):

o(w< w(L))=(;§;)oo exp¢ — [—%’ln(—l%o)}“z ’ )

This dependence corresponds to Mott’s law (2). We note that (12) yields the conductiv-
ity of the average chain. If we examine, in accordance with Ref. 10, a large collection
of parallel noninteracting chains of finite length, then the conductivity will be deter-
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mined by chains with resistances that are smaller than that of a mean-statistical chain.
This leads {see Ref. 10) to an additional insignificant factor 1/£, in the logarithm in
(12).

In conclusion, we shall discuss the applicability of the 1D approximation. Let 1/
7, be the probability (per second) of a jump into a neighboring filament. The condition
that the electron jumps more often along the chain than across the chain is 1/
7, €w(T). The frequency dependences (9) are valid if @ > 1/7,. The dc conductivity is
(10) or (12) if wo(T') or w(L ) exceeds 1/7,. For the lowest temperatures when 1/7,, the
conductivity must be three-dimensional (2) with d = 3. However, experiments with
many quasi-one-dimensional compounds (see Refs. 12 and 15) prove that there exists a
rather broad region from 7~ 100 K to 7'~ 15 K, in which at @ = 0 Mott’s law (2) is
satisfied with d = 1 and T,,~0.5-1x 10* K. This fact shows that 1/7, can be ignored
in this temperature range. Since 1/7~200 K, /~107° cm in these compounds (see
Ref. 16), we obtain the reasonable estimate ~9-15 for the logarithm in (12). Thus it is
possible to estimate, though very roughly, the probability of a transverse hop 1/
T~V eXp( — 20).

I thank A. I. Larkin, D. E. Khmel’nitskii, and B. 1. Shklovskii for useful discus-
sions.
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