Brownian motion of quantum particles
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A quantum theory of interaction of particles, moving in a one-dimensional
potential with a thermostat in the form of a viscous medium, is constructed. The
equilibrium density distribution and the particle lifetime in a potential well of finite
depth in the presence of tunneling and dissipation are determined.

PACS numbers: 05.30. — d, 05.40. +

One-dimensional motion of a classical particle with mass m in a potential U (x) in
the presence of a viscous medium can be described by the Langevin equation
= —yx —m 'U"(x) + 5(t), where 5{t ) is the random force and ¥ is the coefficient of
friction, which is the only characteristic of the interaction with the thermostat.

To examine the quantum situation, we shall explicitly introduce the thermostate
in the form of an infinite string, attached to the particle and tightened perpendicular to
the axis of particle motion. In the classical limit, the action of the string on the particle
is equivalent to the presence of a viscous medium with a coefficient of friction y = ps/
m, where p is the linear density of the string, and s is the velocity of traveling waves
along the string’; in the quantum case, there can be only this combination of p and s.
The number of degrees of freedom then increases; on the other hand, we obtain a
nondissipative dynamic system, which can be quantized in the usual manner. We note
that the approach presented here is applicable to any medium with linear response.

We shall first find the equilibrium coordinate distribution of quantum Brownian
particles in the potential U (x) at temperature 7'=f ~ . The state of the system particle
+ string is completely determined by the displacement of the string along the axis of
motion of the particle x{z) |z is the distance along the string and the coordinate of the
particle is x=x(0)]. The equilibrium coordinate distribution of particles ¥ {x) is given
by the Feynman integral over the periodic trajectories x(z, ) with imaginary time

Nix)= | exp(— S/mD [x(z,t)], N
x{ z,hB)=x(z0) x (0, 0)=x (0, hif)=x

with the action

hg o0
S=f—§ {mJ.c2(0)+2 Ux (0)+ [p)}z(z)+ps2(i%(—j)-—i—)2]dz Ydrt. (2)
0 0

If the temperature is small compared to the characteristic drop in the potential, in
calculating integral (1) we can assume that the potential U is quadratic near the point
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x, i.e., we can drop the third and higher-order terms in the Taylor expansion of the
potential near this point. [In the case of a harmonic oscillator, the expression obtained
below for N (x) is exact.] Expanding the coordinate of the particle in a Fourier series
with respect to the Matsubara frequencies

oo

x({0,t)=x*ay + 3 (an cosw, t+ b sinw, t) w, = 2an/Bh
n=1

and minimizing action (2) with respect to configurations of the string, we obtain

S=8h{Ux)+Ulx)a

+ %[m_l U'(x)a} + L (w2 + yaw, +m ' Utx))(al, + b2)]}.
n=i

Substituting this expression into (1) and integrating with respect to @, and b, with
the condition £_,a, = 0, we find to within a factor independent of the coordinate

Nix)=¢*"%(x)T (1 ~gaX(x)/ 2m)T (1 =B h X(x)/2n)- exp {~ B[Ux)

— (1 ~gx)h U (x)P/2U"(x)1}, (3)
where

O(x)= [ U'x) T (W} + v lw,) + m ULy @

n=- o0
A* and A ~ are roots of the equation
AN+ yA+mt U (x)=0. (5)

Expression (3) is applicable in regions of x where U ”(x) exceeds some (negative)
boundary value U}, corresponding to the right-most pole of ¢ as a function of U". As
the region, where U "< U}, is approached N (x ) is determined by trajectories that are
increasingly more distant from x, so that the quadratic approximation finally becomes
inapplicable. At ¥ =0, we have

#x/= (BR(U " (x)fm) V' 2/2 1 th(BB( U (x)fmf?/2) and U] =~ m (nlB ).

We shall now examine the problem of Brownian particles leaving the one-dimen-
sional potential well through the barrier. We shall assume that the depth of the well
Uy> T and we shall use the quasistationary approximation, i.e., we shall assume that
the distribution of particles in the well is an equilibrium distribution, while the flow
through the barrier is a steady-state flow. The classical problem in this formulation
was solved by Kramers,? and Affleck’® obtained the solution in the quantum case for
particles that do not interact with the thermostat. Quantum tunneling was studied
with exponential accuracy by 1. Lifshitz and Yu. Kagan® (at a finite temperature
without dissipation), Caldeira and Leggett® {with dissipation at zero temperature), and
Larkin and Ovchinnikov® (with dissipation at finite temperature).
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Since the flow is weak, the particle distribution differs from the equilibrium distri-
bution only in the region near the top of the barrier, where the barrier can be assumed
to be quadratic U (x) = — mw*x*/2, w is the frequency of the corresponding inverted
oscillator. We shall first write the Wigner function for the distribution of particles over
the coordinate x and momentum p (see, for example, Ref. 7) at ¥ = 0 corresponding to
steady-state flow. The equilibrium distribution functions for the inverted quantum
oscillator differs from the classical oscillator by the fact that the temperature 7T is
replaced by (fiw/2)ctg(fico/2T'). Steady-state flow through the barrier (from left to right)
corresponds to the distribution function

f(p, x)= const 8(p — mex) exp [~ { 2/h w)tg (Bheo/ 2) (P?/ 2m — mw*x?/2). (6)

It is easy to verify that this function is stationary, transforming into an equilibrinm
function in the limit x— — 0, while in the limit x— 4+ « the number density of
particles (f( p,x)dp approaches zero.

To determine f( p,x) with 50, we shall transform to normal oscillations of the
particle + string system. Aside from stable, oscillator-type modes, there is a single
unstable mode, corresponding to an inverted oscillator with frequency A *, which is
the positive root of Eq. (5) at the point x = 0. It is evident that for a steady-state flow,
the coordinate and momentum distribution function of each of the stable modes will
be the equilibrium function, while for the unstable mode, we have (6) with 4 *, instead
of w. After the particle distribution function is determined by integrating over the
coordinates and momenta of all modes and calculating the flux through the barrier
J=m~'{pf( p.x)dp, we find

J= X (2 npmw?® ¢ (0))” /% N (0), (7)

where N (0) is the equilibrium particle density at the top of the barrier. Relation (7)
from the classical relation only by the factor ¢ ~'/%(0).

It is usually interesting to know the lifetime of the particle in the well, i.e., the
ratio of the number of particles in the well (in the region x <0} to the flux (7). At
T<U,, the particles are concentrated near the bottom of the well, where the well may
be assumed to be an oscillator with frequency (2. Calculating in this approximation the
number of particles in the well according to (3), we obtain

XQr Q-gxX2mrQ —-px/2n U

7= A — e (8)
2wl (1 —BhN/2m) T (1 —Bh A/2m)

where
Nm— 92 2 (/4% WD VE g AT= /2 (P4 QDR

Since expression (8) does not contain ¢ (0}, when the temperature decreases, the
singularity in 7" arises only when I' {1 — B#l */27) becomes infinite, so that the
region of applicability of (8) T'> T, = #il * /2 is wider than that of expressions (3) and
(7) To calculate the flux at temperatures close to 7, and below, the deviation of the
barrier shape from the parabolic shape must be taken into account (see also Refs. 3, 4,
and 6).

At high temperatures, the expression obtained for 77! becomes the Kramers
expression? (all I" functions are equal to 1), while in the limit y<o, 2 [using relation
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'l + z)" (1 — z) = wz/sinwz] gives Affleck’s result.”> Thus our result is a direct gen-

eralization of Refs. 2 and 3 to the case when both the quantum effects and viscosity are
present.

Y'We point out that the equilibrium distribution remains unaffected by viscosity only in the classical limit.

?To be rigorous, we point out that when the viscosity is too low (when y/2 = T /U,), the quasistationary
approximation is not applicable.”
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