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The cyclotron radiation of a hot plasma is determined by the relativistic tail on the
electron energy distribution; in other words, this is essentially synchrotron
radiation. Depression of the synchrotron radiation may substantially reduce the
emission from a plasma with a sufficiently high density.

PACS numbers: 52.25.Ps

1. Tsytovich' has shown that the magnetic bremsstrablung of relativistic particles
{synchrotron radiation) is greatly attenuated if the particles are moving through a
dense plasma instead of a vacuum. This effect is well known in astrophysics, where it is
called the “depression of synchrotron radiation” {see Ref. 2, for example). In the
present letter we show that this depression effect may reduce the emission from a hot
plasma (T'% 25 keV) substantially (by a factor of several units).

2. According to KirchhofPs law, the flux density of the emission from a plasma,
{d] /dw)ds2, differs only slightly from the equilibrium Rayleigh-Jeans flux density if
the absorption coefficient for radiation incident on the plasma, 7{w,{2 ), is approximate-
Iy unity. For a plasma with L>1 m and 7 »25 keV we have 7(w,d2)=1 at
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o So*~10w, and (0,02 )<1 at @ R ©*, where o* is the so-called emission frequency.
Correspondingly, the total emission from the plasma is given approximately by

I=w*3T/12n%c% .

Here we have taken into account the waves of one polarization (the extraordinary
waves), which carry off most of the energy from the plasma. Trubnikov and Bazhan-
ova’® have shown that the accuracy of emission calculations is poor if the frequency w*
is found from

W(w*, 0 =m/DL=1, (1)

where « is the spatial damping rate, and 6 = k??o. For a plasma slab of thickness L we
have 7 =1 — exp( — 2«L ).

Let us find «(w,0 = 7/2}, taking depression effect into account. To calculate x we -
work from the Einstein relation between the emissivity and absorptivity of a plasma,
which can be written in the following form (see Ref. 4, for example) in the classical
limit (fiw<T):

4r3c? d  df,
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where {d j/dw)d{2 is the emissivity of an individual electron.

The synchrotron radiation “forms” in a time Af<w ', so it is conveniently calcu-
lated as a bremsstrahlung which arises in a “collision” of an electron with a magnetic
field (see Refs. 5 and 6, for example):
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Here the time is reckoned from the instant at which v(z )| k.

For extraordinary waves propagating across a magnetic field we have

o0
J~vw, [ drtexp(i®ft), 4)
- oo
where
1 3 1 k 5 =Py
O(t)= wt— ki(t) ~ (@ — kvt + ko (w,1) o ko (@gt), Py = o

We assume that out of the entire Maxwellian velocity distribution the electrons which
dominate the emission are those whose velocities are near the speed of light,

2
v~ c(l— ! (me‘c) + 3@1—‘-’-0)4),
2 P 8\ p
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and whose pitch angles y = arctgy, /v, are approximately equal to 8 = 7/2. We also
assume that the plasma density is not too high (v, <»); under these conditions we
have

2
K'x-‘—dl—}—ﬁ&).
¢ 2\ w

Under these assumptions we find

2 4 2 Fx7Y] 2
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Here we have used

m.c I/mec \?
w, ~ weo__e__ 1— _(.__e__)),
p PANNY 4

where w,, = eB,/m,c. The integral over df in (4) can be evaluated by the method of
* steepest descent;

2m) % ¢ 1 w 2 3fmc} w 7 \? 2
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Substituting the latter expression into (3) and (2), and again using the method of steep-
est descent to integrate over de and dy, we find

172,372 2 T
m u w 9 1/3 2/3 2
K ~ —_—— Pe exp —_ — _il)_ ”2> + “ — _l _9_. uzwie.o _ i"—le_._
3cweo 2 Weo 10120 w Ww,,

Here u = m,c*/T> 1. The saddle point is at
i/3 1/3
p~ i el m%T) — _1_ X 3 Yeq m*3 53
3 We o € 10 4 wT €

Expression (6) differs from that derived in Ref. 7 by the last term in the argument of
the exponential function; this term reflects the depression effect. The correspondence
between (6) and the result of Ref. 7 shows that our assumption of a governing role of
fast electrons in the emission was correct.

3. Let us use (6) to determine the maximum emission frequency. In condition (1)
we have the dimensionless quantities

A= w;gzel‘/weoc' b= mecz'/T' 2. = (wpe/weo)zr n= w/weo'
We write n* = w*/w,, as a function of ,BL (G-cm) = (20/3)AT (keV), treating 4 and
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FIG. 1. Index of the maximum emitted harmonic vs 8, BL for various plasma densities and temperatures.
1—7 = 100 keV, g, = 0; 2—T =100 keV, g, = 10; 3—50, 0; 4—50, 10; 5—25, 0; 6—25, 10.

g, as parameters. With g, = 0 we find the results of Refs. 3 and 7-9 from (1). (The
error of these calculations does not exceed the error of the approximate equations
derived in Ref. 9). With ¢, = 10, the depression effect can reduce the emission by a
factor of several units (Fig. 1). The effect becomes much greater as the plasma density
increases (Fig. 2).

Figures 1 and 2 show that the depression effect can substantially reduce the
cyclotron radiation at g, = 8,m,c*/2T, 2 10. Cyclotron radiation plays an important
role in the energy balance of a hot plasma (7, ® 25 keV). In this case the condition ¢,
Z 10 can be satisfied only at a sufficiently high plasma pressure, 8, = 87n,T,/B*2 1.
This relation among parameters is typical of so-called compact tori.

In several systems (bumpy tori, modified tandem mirrors, etc.) the plasma elec-
trons consist of two groups: a main group with a temperature 7, <m,c* and a small
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FIG. 2. The same as in Fig. 1, for T = 50 keV and various plasma densities. 1—¢, = 0; 2—3; 3—10: 4—30.
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group of high-energy electrons with €2 m,c?. In systems of this sort the depression
effect will substantially weaken the synchrotron radiation of the high-energy electrons
at w,, R 04 £ ¢, where o, is the plasma frequency of the “cold” electrons.”** [This

condmon can easﬂy be derlved by analyzing the state of the phase resonance between
the high-energy electrons and the electromagnetic waves; this state is characterized by
the phase (5).] Under the experimental conditions of Ref. 10, for example, the value of
gq. for the depression of the synchrotron radiation should be increased by a factor of
about ten.
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