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The soliton density index is calculated near the point of the transition from a
commensurate phase to an incommensurate phase in adsorbed films in the
presence of a random arrangement of point defects in the substrate. This index is
5/6 and very different from that (1/2) of an ideal substrate.

PACS numbers: 68.45. — v, 68.60. + q, 64.60.Cn, 61.70.Ey

At degrees of surface coverge approaching multilayer coverage, atoms adsorbed
on a crystal surface form lattices with lattice constant which are incommensurate with
those of the substrate.' Near the point of the transition from the commensurate to the
incommensurate phase, the latter consists of large regions of commensurate phase
separated by linear regions of a disrupted commensurability—domain walls or soli-
tons—which compensate for the difference between the lattice constants of the film
and the substrate? (Fig. 1). A typical experimental situation is an adsorbate at equilibri-
um with a gas in a chamber.? If a soliton is to form, the chemical potential of the gas,
I, must exceed a certain critical p,.

As u is increased further (by increasing the pressure, for example®), a finite den-
sity of solitons n appears in the system. This density can be determined by measuring
the shift of the diffraction features of the lattice of adsorbed atoms. Pokrovsky and
Talapov* have shown that fluctuational displacements of solitons may cause n(u) to be
a power function n < (u — . )*, where s* (the soliton density index) is 1/2. This result
has been confirmed experimentally.>*

There is always a finite concentration of point defects on a substrate. These de-
fects may be impurity atoms, vacancies, etc. Their mobility may be extremely low at
experimental temperatures®, i.e., they may be “frozen.” Experiment shows that the
defect concentration ¢ will be ¢ 2 10~ even after a thorough cleaning.® At small values
of n, the defects may therefore be important. A soliton is a density wave of a finite
width 4, (Fig. 1), so that a point defect of the substrate will interact with a soliton in a
region of dimension o« A,. The particular shape of the defect potential is determined by
the interaction of the adsorbed atoms with the defect and by the shape of the soliton.
For the results of the present letter, however, where we are considering the soliton
fluctuations at large distances, the only important point is that the potential of the
defect must be a local potential, confined to a region with a width of order 4,. The
shape of the potential does not appear in the calculations, and in the analysis of the
influence of thermal fluctuations the particular potential (Gaussian) is chosen for con-
venience in the calculations.

Let us consider the effect of defects in the very simple case of a banded soliton
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FIG. 1. Banded structure of solitons in the field of point defects (crosses). The hatching shows the region of
the solitons.

structure (Fig. 1). A structure of this sort should arise, for example, in the incommen-
surate lattices which are formed by compressing commensurate lattices along one of
the substrate directions.” A banded structure has been observed experimentally in the
system of freon and exfoliated graphite.? The displacement of an isolated soliton in the
absence of defects can be described by the Hamiltonian

Hy = % § A @¢/ox)*dx. (1

Here A is the elastic energy per unit length of the soliton. If 7" 40, the mean square
displacement of the soliton is {(¢ ( x) — & (0))*) = 2T |x|/A. In the presence of “frozen”
defects, a soliton will undergo displacements in a fluctuational manner even at 7' =0,
because of inhomogeneities in the defect distribution. The number (¥ ) of defects which
interact with a soliton over a distance L is N~cAyL, and the average magnitude of the

fluctuations in the number of defects is ~+/N. If the amplitude of the defect potential
is vy, then the energy of the pinning of the soliton by impurities is

W (L )~vy N ~vgcA,L . Equating this energy to the elastic strain energy (E) of the
soliton over the distance L,E~A(¢/LPL, we find the estimate
(@ (L) — ¢ (0))?) ~voh ~1Aye)'2L */2. The fluctuations in the displacement caused by
the defects thus increase more rapidly than the thermal fluctuations with increasing L.
The thermal fluctuations should attenuate the effect of the defects, since they “push” a
soliton out of the most favorable configuration. An analysis at 7" #0 can be carried out
conveniently in a model with a Gaussian defect potential (the assumption of this parti-
cular potential does not restrict the applicability of the results). For this purpose we
consider a perturbation V of a Hamiltonian H, of the following type (we take the
lattice constants of the adsorbed atoms to be 1):
(#(x) — polx) )

V=fdx 3 -y 2
J x%/x}voexr)( 2 A2 ) (2)
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Here ¢,( x) are the coordinates of the randomly positioned defects. We write the free
energy as a series in V for an arbitrary defect distribution. After taking the average of
the free energy over the coordinates of the frozen defects, the first nonconstant term
arises in second order in V; it is

¢ (x)
4A}
Here the angle brackets denote an average over ¢ with the Hamiltonian H, The
potential (3) is linear in ¢. The corrections of higher order in ¢ are small if Ac<1, i.e., if
the probability for the appearance of two defects over the width of the soliton is low.
The quantity vic4, = W represents the mean square pinning energy. It was shown
above for the case 7 =0 that this quantity increases linearly with the size of the
region. For an analysis of the situation at 7' 50, we perform a transformation analo-
gous to a renormalization in (3). For this purpose we integrate over the short-wave-
length Fourier components of the field ¢ with wave vectors in the interval from ¢, to
q' = qof ~'(qo is the cutoff momentum), and we then change the scale. This procedure
does not alter the functional form of (3), but w, and 4, are renormalized. Specifically,

<vd c AgT™ [ dx exp(— ) >y, - (3)

W= WE I, = )+ - ). @
A A do

This result agrees with the rough calculations carried out for T=0 if at 7 #0 the
asymptotic behavior of W at large values of £ (i.e., L ) is different: W« L /4 This means
that {(¢ (L) — ¢ (0))>) ~vedyc'/?A /4T ~'L 3/* at sufficiently large L; i.e., the displace-
ment fluctuations caused by the defects remain stronger than the thermal fluctuations.
If the soliton density # is finite, the displacements of a single soliton are limited to the
magnitude / = 1/n. This displacement corresponds to the length L, o/ */*. The density
of the additional energy associated with the finite soliton density is A ( /L_)* c; "%/, As
a result, the free energy of the soliton structure can be written

8 AB 4

Vo Qo € _
F=(u, - w)fl + A s

T2 ’ g
where A is a constant. Minimizing (5) with respect to /, we find the function n{u — u,)
to be no(p — . )’’°. We mentioned above that the index 1/2, corresponding to an
ideal substrate, has been observed experimentally. The apparent explanation is that
those measurements were taken quite far from the transition point, in a region where
the defect contribution to the fluctuations in the soliton displacement was small in
comparison with the thermal contribution. The results derived in the present letter
mean that when the measurement interval is moved closer to the transition point the

index of 1/2 should give way to an index of 5/6.
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