Quantized Hall effect due to charge density waves
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A theory of quantized Hall conductivity o, which takes into account the
interelectronic interaction via a charge density wave (CDW), is constructed. oy
increases linearly with increasing degree of filling v with the exception of rational
points v = r/p with small p, where a gap arises in the spectrum, while o, exhibits a
singularity, becoming a multiple of e2/A.

PACS numbers: 72.10.Bg, 72.15.Gd, 72.20.My, 72.30. +q

The discovery of guantization of Hall conductivity (QHC) o, in two-dimensional
(2D) conductors generated interesting problems and attracted attention to this field.
von Klitzing er al.' discovered integer QHC oy, = 0, = ve’/h, where v =N is an
integer equal to the number of filled Landau levels (¥ also includes the spin index).
Tsui et al.? discovered fractional QHC with v = 1/3,2/3, while Stromer et al.” discov-
ered QHC with v = r/p, p = 3,5,7. Fractional v correspond to partial filling of the
upper Landau level. In all cases, QHC is observed in the form of a plateau on the
resistance curves p,,, equal in height to 4 /e’v, and deep dips on the curves p,,. In
addition, p,, €p,, and 0,, =(p,,) .

The main features of the mechanism of integer QHC has already been interpreted.
The mechanism responsible for fractional QHC remains puzzling. The only position
that is generally accepted is that this effect is due to interelectronic (¢ — ¢) interaction:
This is the only interaction that can give rise to a gap in the spectrum, which, as
assumed, will be manifested in o, {v) as a plateau. In all three papers known to us on
fractional QHC (Yoshioka et al.,* Laughlin,” and Tao and Thouless®), oy is not
calculated, while the energy is determined by different methods, falling outside the
framework of the Hartree-Fock (HF) method. In view of the complexity of the prob-
lem, assumptions are made in these papers whose consequences are difficult to esti-
mate. We shall calculate the electronic energy by the HF method via the self-consis-
tent CDW field and we shall find o, (v).

The appearance of CDW in 2D systems at temperatures
Tycows ~ [€V{1 — v)/ed (B)], where €is the dielectric constant, A (B) = (c#i/eB)"/? is
the magnetic length, and B is the magnetic length, was predicted by Fukuyama et al.’
We assume that CDW form a two-dimensional lattice. To simplify the equations, we
assume a rectangular unit cell with edges @ and b. The CDW lattice and the magnetic
lattice (with cell area 2774 ) must be commensurable:

ab = —2 2a\*(B), (1)

p and g are prime numbers with respect to each other. We shall assume that the field B
is strong: #iw_<e*/ed, where w, = eB /m*c is the cyclotron frequency. When the CDW
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potential, which is of the order of e’/el, can be viewed in comparison with fiw, as a
perturbation. For this reason, the wave functions #,,(r), which conform to the sym-
metry of the magnetic lattice, can be constructed as linear combinations of the func-
tions ¥, ~{r), chosen in the Landau gauge, with one value of N:
o 2n ) 2 2m\? 5
VD= T  exp 1—5(n+lp)(y+7\ kx)rl/ky(x—k k, - ——b—(n+lp)) (2)

= — o0

(the index N is dropped). The new quantum numbers k and » are defined by the
relations

Py=ky+(n+lp)Qyo, 0<n<p, 5
0< k, < Qxo/q=2m/qa, 0< kngyo-:sz/b-

Thus there exist p functions #,,(r), defined in the new Brillouin zone (3);
Yin + p = U, The eigenfunctions ¢, (r) have the form

Vo) = = Cyy WYy, (). )

For them, the condition of periodicity in k has the form ¢, o, (r) = ¥, (r)
expfif, (k,Q)}.

In the HF approximation, all _, are related by the following system of equa-
tions, which determine the p branches of the spectrum (minibands), into which each
Landau level is split:

p-1 e 2m\?
E Cy®)=2 T T UQg(Qexp {’ik"T (n + lp)}
x n'=0 l= -
|
X exp{zQ k. AZ +1Q —_ (n— ’-12— - —z—p)}Cu, n— n.(k). (5)
Here E, is the energy,
d*k 2
U(Q)= 5 Qwy (@™ - f e MR Qprw? (k%) (6)

(2ny?

is the HF potential, ¥ (k ) is the Fourier component of the potential ¥ (r) of the effective
e — e interaction (which is different for 2D systems), while wy{k?) = Ly(z)e "7,

=A%?%/2,and L, are Laguerre polynomials. The function g(Q), which is related to
the electron density distribution, is determined from the self-consistency condition.
This condition helds if the expression for the electron density distribution is written in

terms of the operator W 2 tha{r) Ak

a
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A A 1
< V@) ¥in) > = o

. %WN(Q’)g(Q)eXP(iQr)

k 0,0 . ,
azn %f Y exp{-— ”\2<—_51 + kny)—-zoa k,Q)+ er}
X fEy )Wy (Q*)Cy, ()G, (k+Q), )

J(E) is the Fermi function. Equation (7) closes the system and permits finding the total
energy E = E (v, p,g). Its minimum with respect to p and ¢ with v = const determines
p = p{v) and E = E (v} (it is logical to assume that g, = 1, and we make this assump-
tion). It is significant that v was treated above as an independent parameter, which
could affect the dimensions of CDW only via p_... In addition, each cell has an
arbitrary (irrational) number of electrons. This is natural, since the CDW lattice is a
quantum lattice (in contrast to the classical Wigner crystal). If v—r/p (r is an integer),
then the cell decreases in size in k space. Simultaneously, new minigaps open up in it
and the number of minibands increases to p. For v = r/p, r of them are completely
filled. In addition, the energy E (v) must have a singularity: a local minimum. It is for
these values of v that singularities (a plateau) were observed in Refs. 2 and 3.

It seems to us that the HF method can explain a number of features of fractional
QHC. The opinion that it is completely inapplicable was formed in the literature based
on calculations'®!! which did not reveal any singularities at v = 1/3 on the curve E (v).
However, in Refs. 10 and 11, E (v} was calculated with a variable CDW cell size,
connected too rigidly with v.

We shall calculate the conductivity o, in the single-particle approximation, i.e.,
we shall assume that the CDW lattice is stationary as a result of pinning and we shall
exclude the contribution of the corresponding collective mode. We shall assume, how-
ever, that the lattice is mobile “in the small,” i.e., it is capable of rearranging itself as v
varies. In the calculations, we shall make use of the elegant work of Thouless er al.'? It
follows from Kubo’s equation that

e, dk
Oy=— -E)\ zf Cr )zf( a)(rOtkAa(k)) , (8)
where
i du dul
(Aa(k))]= 5 fdzré‘l:a akk‘]x T U%a ak]:]x ) 9

The integration in (8) and (9) is bounded by the cell of the direct and reciprocal
CDW lattices, while u,,, = ¥, exp( — /kr). Using (2) and {4), we obtain

ac ac*

- o 4

(A M), = K, 5, + Ez{c;n T P Cyn ak‘"}. (10)
7

Assume, at first, that v does not approach any number 7/p with large p, while v{1 — v)
is not too small. Then both cells, {the magnetic and CDW) coincide, p =¢ =1, and
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C,, = 1 is the only remaining coefficient. Then, only the first term remains in (10), and
oy =(/hp. (11)

This result is nontrivial, since electrons move in the field of the CDW. If +(1 —v) is
small, so that Ty cpwi{v) < 7, then (11) is also valid.

If v = r/p with small p, then the CDW lattice is rearranged and its Brillouin Zone
decreases in size by a factor of p. In this case, all coefficients C,, are of comparable
magnitude. It is shown in Ref. 12 that at such points

o, =(e*/h)s, (12)

where s(p,a) is a positive or negative integer, which depends on the specific model.
But, if v =m (m is an integer), then oy = (¢*/h }m, which also agrees with (11).

It is clear from the preceding disucussion that the CDW can be restructed with a
change in p, which occurs with vs£r/p.

The basic results are as follows. Far away from the points #/p (with small p), as
well as for small v{1 — v}, the conductivity o, follows the “classical” law (11). For
v = m, g4(v) is also continuous (the plateau is formed due to an external mechanism, a
“reservoir”’??). For v = r/p, the HF approximation leads to opening of gaps in the
spectrum and to singularities in o, {v), large peaks up to the integer-valued o (e*/h s,
positive or negative. It is unclear whether these peaks are attributable to defects in the
HF method, which gives a single-particle description of the transport phenomena, or
whether they are real effects, which have not yet been observed due to imperfection of
the specimens. The key role here could be played by the partial pinning of the CDW
lattice, retaining local mobility sufficient for local restructuring of CDW and forma-
tion of gaps, but breaking down the long-range correlation [to which Eq. {12) could be
more sensitive] and giving rise to dissipation. If remains unclear how the external
manifestations of the characteristics described above change under conditions of the
mosaic structure of CDW resulting from pinning.

UThe classification of levels of finite-electron clusters, developed in Refs. 6 and 7, is used in Ref. 5
21t can also be generally determined from the shape of the cell.
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