Anderson transition in a disordered quasi-one-dimensional system

V. N. Prigodin and Yu. A. Firsov

A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad

(Submitted 8 May 1983; resubmitted 11 July 1983)

Pis'ma Zh. Eksp. Teor. Fiz. 38, No. 5, 241-243 (10 September 1983)

All the states remain localized in the transverse-coupling region $w < 1/\tau \ll \varepsilon_F$ when the diagrams with maximally intersecting impurity lines are taken into account in a self-consistent manner. Diffusion occurs at $w\tau \gtrsim 1$. The frequency dependence of the conductivity is calculated.

PACS numbers: 71.55.Jv, 72.80.Ng, 66.30.Jt

The problem of the localization of a quantum particle in a disordered one-dimensional system can be studied exactly by the Berezinskii method, but attempts to apply this method to two- or three-dimensional systems run into serious mathematical difficulties. Some diagram methods have recently been developed for a qualitative study of the electron-localization problem in systems of dimensionality d=1,2 (Refs. 3-5), and 3 (Refs. 6 and 7) (Anderson localization). A qualitative agreement with the exact results has been achieved in the d=1 case. In the present letter we take this approach to study a quasi-one-dimensional system. The Green's function of the electron can be written

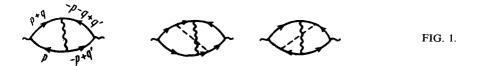
$$G_{\pm}^{-1}(\omega, p) = \omega - v_F(|p_{\parallel}| - p_F) + w\phi(p_{\perp}) \pm i/2\tau;$$

$$\phi(p_{\perp}) = \cos ap_x + \cos ap_y;$$

$$\frac{1}{\tau} = 2\pi u^2 N(0); \quad N(0) = \frac{1}{\pi v_F a^2}.$$
(1)

We are assuming $\varepsilon_F \gg w$, $1/\tau$.

Gor'kov et al.³ have reported some diagrams which cause a substantial renormalization of the diffusion coefficient for d = 1,2; these diagrams are shown in Fig. 1



(Refs. 3-5). Here a wavy line is a diffusion in the electron-electron channel, where its Green's function is of the standard form:

$$D^{0}(q, \omega) = \frac{u^{2} \tilde{\tau}^{1}}{-i\omega + D_{\parallel}^{0} q_{\parallel}^{2} + D_{\perp}^{0} (2 - \phi(q_{\perp}))}$$

$$D_{\parallel}^{0} = v_{F}^{2} \tau ; \quad D_{\perp}^{0} = w^{2} \tau.$$
(2)

The corresponding corrections to the diffusion which result from these diagrams are given in the quasi-one-dimensional case by

$$D_{\parallel}(\omega) = D_{\parallel}^{0} - \frac{1}{\pi N(0)} \int \frac{d^{3}q}{(2\pi)^{3}} \frac{\widehat{D}_{\parallel}}{-i\omega + \widehat{D}_{\parallel}q_{\parallel}^{2} + \widehat{D}_{\parallel}(2 - \phi(q_{\parallel}))}, \qquad (3)$$

$$D_{\perp}(\omega) = D_{\perp}^{0} - \frac{1}{\pi N(0)} \int \frac{d^{3}q}{(2\pi)^{3}} \frac{D_{\perp}}{-i\omega + \widetilde{D}_{\parallel}q_{\parallel}^{2} + \widetilde{D}_{\perp}} (2 - \phi(q_{\perp})), \tag{4}$$

where $\widetilde{D} = D_0$. The integration over q_{\parallel} in (3) and (4) is restricted by the condition³⁻⁷ $q_{\parallel} \leqslant (D_{\parallel}^0 \tau)^{-1/2} = 1/l_0$, since diffusion always occurs over distances greater than the mean free path l_0 . The integration over q_1 in (3) and (4) is carried out over the entire first Brillouin zone if $(\omega \tau)^2 < 1$. It follows from Eqs. (3) and (4) that, as in the cases d = 1,2, the corrections may prove extremely important at low values of the parameter w (more on this below), and we are confronted with the unresolved problem of taking into account the succeeding corrections—a thoroughly complicated problem.³⁻⁶ Following Ref. 4, we take the sum of the corrections of this sort in a self-consistent way: We set $\overline{D} = D(\omega)$ in Eqs. (3) and (4). As a result, we find

$$\frac{D_{\parallel}(\omega)}{D_{\parallel}^{0}} = \frac{D_{\perp}(\omega)}{D_{\perp}^{0}} = \alpha(\omega),$$

$$\alpha = 1 - \chi_{1} + \frac{-i\widetilde{\omega}}{\alpha}, \chi_{2},$$
(5)

where

$$\chi_{1} = \int_{0}^{1} \frac{dq}{\pi} \int \frac{d^{2}q_{1}}{(2\pi)^{2}} \frac{1}{q^{2} + \widetilde{w}^{2}(2 - \phi(q_{1}))^{2}},$$
 (6)

$$\chi_{2} = \int_{0}^{1} \frac{dq}{\pi} \int \frac{d^{2}q_{\frac{1}{2}}}{(2\pi)^{2}} \frac{1}{q^{2} + \widetilde{w}^{2}(2-\phi)} \frac{1}{-i\widetilde{\omega}_{/\phi}^{2} + q^{2} + \widetilde{w}^{2}(2-\phi)}$$
(7)

We have introduced $\widetilde{w} = w\tau$ and $\widetilde{\omega} = \omega\tau$. The quantity χ_1 in (6) is a monotonic function of \widetilde{w} : $\chi_1(\widetilde{w} \to 0) \propto 0.37/\widetilde{w}$ and $\chi_1(\widetilde{w} \to \infty) \propto \ln \widetilde{w}/(\pi \widetilde{w})^2$. There accordingly exists a critical value¹⁾ \widetilde{w} , given by $\widetilde{w}_c \cong 0.31$, where D(w = 0) = 0. Near the threshold, Eq. (5) can be rewritten $[|\widetilde{\omega}/\alpha| \leqslant 1, |\varepsilon| \leqslant 1; \varepsilon = (w - w_c)/w_c]$

$$\alpha = 1, 25 \epsilon + 1, 64 \sqrt{-i\widetilde{\omega}/\alpha}. \tag{8}$$

It follows that at $w > w_c$ the system is in the diffusion regime. Setting $\sigma(\omega) = \alpha(\omega)\sigma_0$ we find, for $w > w_c$

$$\frac{\sigma_{dc}}{\sigma_0} = \epsilon \; ; \quad \frac{\sigma_{ac}}{\sigma_0} \sim \begin{cases} (1-i)|\widetilde{\omega}/\epsilon|^{1/2} \; ; \quad |\widetilde{\omega}| \leqslant |\epsilon|^3 \\ (\sqrt{3}-i)|\widetilde{\omega}|^{1/3} \; ; \quad |\epsilon|^3 \leqslant \widetilde{\omega} \leqslant 1 \end{cases}$$
 (9)

At $w < w_c$, as in the one-dimensional case, all the states are localized, and we have

$$\frac{\sigma(\omega)}{\sigma_0} \sim \begin{cases}
-\frac{i\widetilde{\omega}}{|\epsilon|^2} + \frac{2|\widetilde{\omega}|^2}{|\epsilon|^5}; & |\widetilde{\omega}| \leqslant |\epsilon|^3 \\
(\sqrt{3} - i)|\widetilde{\omega}|^{1/3}; & |\epsilon|^3 \leqslant \widetilde{\omega} \leqslant 1
\end{cases}$$
(10)

The static conductivity in this range of w may have a hopping mechanism. Since we are dealing with the case of weak localization, this conductivity is

$$\sigma_{\text{hop}} \sim \frac{e^2 n}{k T} \nu(T) \lambda^2 ,$$
 (11)

where λ is the localization radius,

$$\frac{\lambda_{\parallel}}{\sqrt{D_{\parallel}^{0}\tau}} \sim \frac{\lambda_{\perp}}{\sqrt{D_{\perp}^{0} \tau a^{2}}} \sim 1/\epsilon \tag{12}$$

and $\nu(T)$ is the hopping frequency, which depends on the particular mechanism that causes the hops. We are assuming⁸ $\varepsilon \gg \tau \nu$.

Scaling relations (9) and (10) correspond to a three-dimensional Anderson transition.^{6,7} The specific one-dimensional dependence^{1,4} $\sigma(\omega)$ holds at

$$\sigma/\sigma_0 \sim -i\widetilde{\omega} + 8\widetilde{\omega}^2$$

and at $w>w_c$ only at high frequencies, $\omega\tau>1$, since $w_c\sim1/\tau$. In contrast, in the quasi-two-dimensional case the low-frequency two-dimensional dependence $\sigma(\omega)$ may be manifested even at $E_F>E_c$.

It should be noted that the approximation of Ref. 9 corresponds to neglecting the normalization of D_{\perp} in Eqs. (3) and (4), and in this case there is no threshold along the w scale. As shown above, however, even the simplest rules for summing the corrections in w to D_{\perp}^{0} by the scheme proposed in Ref. 4 give rise to a localization threshold.

We wish to thank O. N. Dorokhov for a discussion of this work and for useful comments.

¹⁾ In the quasi-two-dimensional case the situation is different. Here the introduction of a finite w immediately gives rise to a region of delocalized states, $E > E_c = 1/\pi\tau \ln(1/\sqrt{2} w\tau)$.

Translated by Dave Parsons Edited by S. J. Amoretty

¹V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 65, 1251 (1973).

²W. Weller, V. N. Prigodin, and Yu. A. Firsov, Phys. Status Solidi 110, 143 (1982).

³L. P. Gor'kov, A. I. Larkin, and D. E. Khmel'nitskiĭ, Pis'ma Zh. Eksp. Teor. Fiz. 30, 248 (1979) [JETP Lett. 30, 228 (1979)].

⁴D. Vollhardt and P. Wölfle, Phys. Rev. B22, 248 (1980).

⁵C. S. Ting, Phys. Rev. **B26**, 678 (1982).

⁶A. Kawabata, Solid State Commun. 38, 823 (1981).

⁷B. Shapiro, Phys. Rev. **B25**, 4266 (1982).

⁸A. A. Gogolin, V. I. Mel'nikov, and Ē. I. Rashba, Zh. Eksp. Teor. Fiz. 69, 327 (1975) [Sov. Phys. JETP 42, 168 (1975)].

⁹A. A. Abrikosov and I. A. Ryzhkin, Zh. Eksp. Teor. Fiz. 72, 225 (1977) [Sov. Phys. JETP 45, 118 (1977)].