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All the states remain localized in the transverse-coupling region w < 1/7 <&, when
the diagrams with maximally intersecting impurity lines are taken into account in a
self-consistent manner. Diffusion occurs at w7 R 1. The frequency dependence of
the conductivity is calculated.

PACS numbers: 71.55.Jv, 72.80.Ng, 66.30.Jt

The problem of the localization of a quantum particle in a disordered one-dimen-
sional system can be studied exactly by the Berezinskii method,' but attempts to apply
this method to two- or three-dimensional systems run into serious mathematical diffi-
culties.? Some diagram methods have recently been developed for a qualitative study
of the electron-localization problem in systems of dimensionality d = 1,2 (Refs. 3-5),
and 3 (Refs. 6 and 7) (Anderson localization). A qualitative agreement with the exact
results has been achieved in the d = 1 case.’ In the present letter we take this approach
to study a quasi-one-dimensional system. The Green’s function of the electron can be
written

Gy (W p)-= w-vpllpyl—pp) +t wo(py) * if2r;
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We are assuming £,>w, 1/7.

Gor’kov et al.* have reported some diagrams which cause a substantial renormal-
ization of the diffusion coefficient for d = 1,2; these diagrams are shown in Fig. 1

284 0021-3640/83v 170284-04$01.00 © 1984 American Institute of Physics 284



-
v"q ¢xp‘

X D> <> o1
¥4 ,Pk“.

(Refs. 3-5). Here a wavy line is a diffusion in the electron-electron channel, where its
Green’s function is of the standard form:

u2 1:'1
D(q, ) =~ 2)

Dﬁ = vpT; Dg = wir,

The corresponding corrections to the diffusion which result from these diagrams
are given in the quasi-one-dimensional case by
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where D = D,,. The integration over g, in (3) and (4) is restricted by the condition*”’
g, <(D{ 7)7"/? = 1/l,, since diffusion always occurs over distances greater than the
mean free path /,. The integration over g, in (3) and (4) is carried out over the entire
first Brillouin zone if (w7)* < 1. It follows from Eqgs. (3) and (4) that, as in the cases
d = 1,2, the corrections may prove extremely important at low values of the parameter
w (more on this below), and we are confronted with the unresolved problem of taking
into account the succeeding corrections—a thoroughly complicated problem.*~® Fol-
lowing Ref. 4, we take the sum of the corrections of this sort in a self-consistent way:
We set D = D () in Egs. (3) and (4). As a result, we find

D) _ Dyw)

0 0 = a(w)’
—i& (5)
a=1- Xl + \.Xz ’
where
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a? 1
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We have introduced w = wr and @ = wr. The quantity y, in (6) is a monotonic func-
tion of w: y,(i—0) < 0.37/W and y,({0— oo ) « In /(7i0)*. There accordingly exists a
critical value" @, given by i, =0.31, where D (w = 0) = 0. Near the threshold, Eq. (5)
can be rewritten {|@/a|<1, le|<€l; £ = (w — w, )/w,.]

a=1,25€¢+1,64 \/ —i&/a - (8)

It follows that at w > w, the system is in the diffusion regime. Setting o{w) = alw)o, we
find, for w>w,

o o (A-DiG/elV?; |G1<]el?
_df=€' _4c ~ . (9)
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At w<w,, as in the one-dimensional case, all the states are localized, and we have

—i5 2P .
—t —le*‘ s lwl< leP
0(w) lel el . (10)
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The static conductivity in this range of w may have a hopping mechanism. Since we
are dealing with the case of weak localization, this conductivity is

e*n

~ —— p(T)N?, (11)

G T XT

where A is the localization radius,

A A
L L (12)
\/Dﬁr \/Dﬁ ra’ e

and v(T') is the hopping frequency, which depends on the particular mechanism that
causes the hops. We are assuming® £>7v.

Scaling relations (9) and (10) correspond to a three-dimensional Anderson transi-
tion.>” The specific one-dimensional dependence'* o{w) holds at

N ad ~
0/0p ~—iw + 8w

and at w>w,. only at high frequencies, w7 > 1, since w, ~1/7. In contrast, in the
quasi-two-dimensional case the low-frequency two-dimensional dependence o{w) may
be manifested even at K, > E,.

It should be noted that the approximation of Ref. 9 corresponds to neglecting the
normalization of D, in Egs. (3) and (4), and in this case there is no threshold along the
w scale. As shown above, however, even the simplest rules for summing the correc-
tions in w to D¢ by the scheme proposed in Ref. 4 give rise to a localization threshold.
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"'In the quasi-two-dimensional case the situation is different. Here the introduction of a finite w immediately
gives rise to a region of delocalized states, E> E, = 1/77 In(1/y2 wr).
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