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Equations are derived for the reflection of light from a metal surface with a periodic
profile near a resonance involving the excitation of surface plasmons. Under
certain conditions the reflection of linearly polarized light is completely
suppressed.

PACS numbers: 78.90. -+ t, 71.45.Gm, 73.90. 4 f, 78.20.Jq

The possibility of a resonant excitation of surface plasma waves when light is
incident on a rough metal surface underlies several unusual phenomena, including
surface-enhanced Raman scattering (a scattering by molecules adsorbed on a surface)
and the intensification of second-harmonic generation (see the reviews by Brodskii and
Urbakh' and Emel’yanov and Koroteev? and the bibliographies there). After bombard-
ing a metal target with a laser pulse, Young et al.® observed surface damage with a
periodic structure. To reach a clear understanding of the mechanism for the formation
of this structure we need to study the interaction of light with a metal surface with a
periodic profile.

In this letter we report results on the reflection of a plane monochromatic light
wave of frequency « from a metal surface specified by the equation z = bsingr, where
z = (n-r),(g:n) = 0, n is the unit vector normal to the unperturbed (plane) surface of the
sample, and g is the vector of the periodic profile. It is assumed here that the profile
depth b is small in comparison with the wavelength of the light; i.e., bk<1,k = w/c. To
find the relationship between the components of the electric field of the reflected wave,
E’, and of the wave incident on the metal, E °, we use the Leontovich boundary condi-
tion*

{E—m(mE)—i%[m,rotE]} =0, E=E°+E . (1)

z = bsingr

Here m is the normal to the periodic surface, and { = { () is the surface impedance,
which is assumed to satisfy the inequalities | |<1Re{<|Im{ |.

In principle, we can seek a solution of (1) by formally expanding in powers of the
small parameter bk. In zeroth order in bk, this expansion reduces to the Fresnel
formulas* In first order we find terms ~bk/B(g,),  where

B(Q) = —\]1 [kT— Q% + (4, =q+g, ,qis the component of the wave vector of the

incident wave which is normal to n,|q| = ksinf, and @ is the angle of incidence. If
g#0, we may have a situation with {B (q, )| <1 or |B(q_)|<l—or—|B (q,)|,| B (q_)| <!.
The equation B (Q) = 0 determines the spectrum and the damping of surface plasmons
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with wave vector Q, so that this situation corresponds to a resonance with respect to
the excitation of surface plasma waves. Since the nth-order expansion of the field E’

contains terms (bk /B)", we need to sum over the entire perturbation series for
|B| s bk.

Another solution method—the one we have chosen—is to write the field E' as the
series

r _FTre 2 . ST —tation
E'=zZ & explifq+ig)r— i/ k* —(q+ig)z)

It turns out that as we raise |/ | to values |/ | > 1 the ratio of successive components | %, |
is proportional to bk and does not contain resonant denominators B. With an accuracy
to relative corrections ~ (bk )%, the infinite system of algebraic equations which results
from (1) can easily be closed. The solution of the system of equations gives us the
following relationship between the reflected and incident waves at a single resonance,
with |B(g,)|<1|B(g_)|~1 [the resonance |B(gq_}|<1 can be reduced to |B(g )| <1
through the substitution g— — g}:

2 50 LT ]
£ =,cos€—§ E°—2iw'?p—| Ep+ aa, Es , 2
P cosg+t | P F
1 — ¢cosh la )2E® +a*a E°
E' =_ E° —9 s s s PP 3
s 1+¢cosf [P @ F )

Here the signs of p and s correspond to the projections of the amplitudes of the fields
E° and E' onto the polarization direction in the plane of incidence and onto the normal
to this direction. The other quantities are

. 1512
F=w?—wi(@)+ io(,+7,), w,(q,)= CIq,I<1 -t A(bk)’),
1y = wimi?, Y, = lay1? + lag|?,

Y]
It lweosd 2 cosyp 1% |Scosh ? sing
a = 2277 e , a = be :
p 2 cosf +¢ $ 2 1+¢cosd

where w,(q., ) is the renormalized frequency of a surface plasmon with wave vector ¢, ;
A is a dimensionless function of q, g, and k, on the order of unity; ¢ is the angle
between g and q; and y, and ¥, are, respectively, the dissipative and radiative parts of
the plasmon damping. The radiative part results from the conversion of a plasmon into
a photon.

At the double resonance [|B (g.)|,|B(g_)|<1] we have
6 — 1— ¢cosd la_1?
gre S0 8 g 108 [1—4iw %}E’ (4)

P cosf+¢ p? 1+¢cosb §
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Here F = o” — 0}(g,) +io(ys +7,) ¥, =2la,*

The first terms in square brackets in Egs. (2)—(4) correspond to reflection from a
plane surface (the non-resonant contribution). The second terms in the square brackets
give the contribution of the resonant excitation of surface plasmons. Because of this
excitation, the intensity of the reflected light is a strong function of , 8, g, and b. The
most obvious manifestation of this dependence is the possible complete suppression of
reflection from a metal surface with a periodic profile, because the resonant and nonre-
sonant contributions cancel out. For linearly polarized light under the condition
cosd>|{ | the complete-suppression effect sets in under the conditions

0
- m
w = ")p(q»,); ¢ = arcig(hcosh) * > h= 70"
Y 5)
5 Re{ \!? hsin@ 1 for hsing>> =
bk = <———3" ) 1+ = X
:7 +h -
cos"8 ! l 27 fort hsind << gé—
(93]

It is important to note that the profile depths found from these conditions satisfy the
smallness condition bk<1. The angle ¢ in (5) corresponds to an orientation of the
vector g along the projection of the electric field of the incident wave onto the unper-
turbed surface. It follows from (5) that the reflection for p-polarized light (E ° = 0) and
s-polarized light (E ) = 0) is completely suppressed under the conditions g||q and glg,
respectively. The periods of the sinusoidal profile, d = 277/g, are related to the light
wavelength A = 27c/w by

A
d= —— for Eg =0 d= for £° = 0. (6)

1+ sinf
The periods of the damage structure observed in Ref. 3 agree precisely with (6). On this
basis it may be suggested that the structures may form as a result of the onset of an
unstable process which gives rise to a surface profile having the property of maximum
light reflection.

Formulas analogous to (2) and (3) were derived in Ref. 5 through a formal expan-
sion, in which terms of up to second order in bk were retained. However, those formu-
las do not contain terms of order (bk )* in the denominator ¥ and thus become physical- -
ly meaningless under the conditions ¥, R ¥,,|@ — @, |: The intensity of the reflected
light predicted by these formulas may become greater than that of the incident light.

We are deeply indebted to 1. E. Dzyaloshinskii and M. I. Tribel’skii for useful
discussions and E. I. Rashba for useful advice.
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