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A global gauge is topologically forbidden in a non-Abelian theory only for
sufficiently smooth fields. The corresponding boundary is established by the
Sobolev criterion. Below this boundary, the customary Coulomb conditions are
not gauge conditions, even locally.

PACS numbers: 11.15 — q, 02.40.Vh

In this paper we attempt to show how the particular space of fields which is
considered affects the gauge situation in a non-Abelian theory."? Here we have the
peculiar circumstance that Singer’s topological prohibition of a global gauge applies
only to sufficiently smooth fields, but as soon as we cross the boundary below which
this prohibition does not apply we find that the conditions customarily used (the
Coulomb, Lorentz, and background conditions) cease to be gauge conditions even
locally. Clarifying this question would be useful for going beyond perturbation theory.
For example, a refinement of Gribov’s suggestion regarding the path-integration re-
gion by means of a variational principle™* uses a metric determined by the form of the
kinetic part of the Lagrangian. The space L ? corresponding to this metric lies below
the prohibition boundary, and the gauge-transformation group has several singulari-
ties here, as does the variation principle itself. We will see below that the topology of
this group changes. Furthermore, this group ceases to be a Lie group; i.e., the terms
discarded from the infinitesimal-transformation expansion ¢” = 1 4w + ... are in fact
of the same order as w.

The Sobolev spaces® L% constitute the scale customarily adopted for tracing the
changes in topology as the number of functions increases. These spaces consist of fields
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all of whose derivatives of order up to k have an integrable pth power. As the indices p
and & become smaller, the space becomes broader. We denote by G2, , the corre-
sponding group of gauge transformations. Their derivatives are pth integrable up to
order k + 1. The boundary of interest here is defined by the inequality

plk+l)>n. (1

Here n is the dimensionality of the manifold on which the field is defined. Other,
stronger restrictions are also used, but it is condition (1) which is of importance for a
non-Abelian theory. For spaces {1) the Coulomb condition serves as a local gauge
condition.® To show that the theorem of Ref. 2 also holds for these spaces, it is
sufficient to consider the simplest case of the SU(2) theory on the S sphere. Since
SU(2) is homomorphic to S 3, the gauge-transformation group G in this case consists of
mappings S >—S >, Under condition (1), these mappings are continuous by virtue of the
Sobolev theorem®; they permit a continuous deformation into each other only if they
are of identical power. Accordingly, G breaks up into a countable number of compo-
nents. The center Z of this group consists of two elements: constant mappings S 3—J
and S3— — I. For essentially any field the stability subgroup coincides with Z. In
other words, the factor group G /Z acts freely on the fields of general position, which
are still called irreducible. The set of these fields is connected; i.e., any two of these
fields can be connected by a continuous path which also consists of irreducible fields.
This is true for all p and k. The simple and essential meaning of the theorem of Ref. 2
is as follows: If a global gauge did exist, then the set of irreducible fields could be
continuously mapped onto G /Z by associating with each field that transformation
which sends it to the gauge surface (this transformation would be unique by virtue of
the freedom of action). This could not be the case, however, since if it were then any
two elements of G'/Z could be connected by a continuous path (by taking the image of
the path in the field space), but this group is unconnected, as is G.

If P{k + 1) < n, the situation is different. It is simple to see from the same example
that in the topology of a space of this sort any continuous gauge transformation could
be deformed into an identity; i.e., all the components of G would merge to form a
single component. Without any loss of generality, we may assume that g:5>—SU(2)
maps the north pole N into a unit matrix. We assume 0 < #<1/2. We imagine that the
neighborhood 0 < 8 < 7t of the point IV is stretched out into a sphere {1 — ¢)/¢ times.
Correspondingly, the additional part of the sphere is compressed by an equal factor.
What happens to the mapping g during this deformation in the limit #—0? In the small
neighborhood 7{1 — #)<8<# of the south pole, we have a function compressed by a
factor of (1 — ¢)/t~1/t, while elsewhere on the sphere we have the function found
from the small neighborhood of N, which is therefore approximately the same as I. We
thus have ( tr(g, — I)*—0. We can evaluate § trd, g.9"g; in an analogous way: The
integral over the region 0<6 < 7 (1 — ¢) falls off as ¢ ? (the function is stretched out, but
the measure of the region is bounded), while the integral over the remainder behaves as
£3/t? (the function is compressed, and the measure of the region varies ~¢>). We thus
have g,/ in the G? topology. These arguments also hold for the sphere S”. The norm
[Ill,x + 1 is determined primarily by the integral of the (k + 1jth derivative over the
neighborhood of south pole. Since its measure varies ~¢", while the derivative appears
raised to the power p, we have ||g, —I'||,,, . —0 for p(k + 1) <n. When we cross
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boundary (1), the topological prohibition of a global gauge is thus lifted. On the other
hand, a fundamentally new entity arises here: The structure of the smooth stratifica-
tion disappears, both that of the original stratification on which the fields were con-
nected sets and that of the infinite-dimensional stratification generated by the action of
the group G on the irreducible fields.

Let us consider the space L? of quadratically summable fields with the scalar
product (4,B) = f ttd, B*". Semenov-Tyan-Shanskif and Franke® and Zwanziger* sin-
gled out from the orbits generated by G those fields which are the closest in the L 2
metric to some fixed field B. We note that if an extremum on an orbit turned out to be
unique this would mean the construction of a global gauge. A calculation of the first
variation, which must be understood as a variation with respect to smooth subgroups
(1), quickly shows that the extremal fields satisfy the background condition
D (B )4 — B) = 0. First, however, we must show that such fields exist. {Their existence
is assumed in Ref. 4 without proof, and the arguments of Ref. 3 are insufficient.] To
show that an extremum is reached in L ? we consider the orbit 4 §,geG . We introduce
a=inf,||[4§ — B ||, and we distinguish on the orbit those points A; =4 § such that
4, . — Bli<||4; — B||,lim}|4; — B || = a. The sequence 4, is bounded in accordance
with the norm of L %, and from it we can single out a weakly converging subsequence.
We denote the weak limit by A. The distance from A to B does not exceed a, since a
strongly closed sphere is also weakly closed. Accordingly, all we have to show is that
at least one of the weak limits lies on the orbit 4, We see from the expression

a“g,.=gt.,4fl —Ag g (2)

that the sequence g, is of bounded norm, ||-||, ;. From this sequence we also extract a
weakly converging subsequence. We denote the limit by g. For the subsequences we
use the same notation, 4;,g;. By virtue of Roellich’s lemma,> we have g;—g in accor-
dance with the norm ||-||,. We can then also prove 4 =A4§. Let us take the scalar
product of (2) with the field ¢, assuming it to be smooth and with a small carrier. We
then take the limit. At the left we find (3,8, ¢, ) by virtue of the weak convergence of
g;. The second term on the right gives us (4,8,6 ), for the same reason. We write the
former as (g; — gl4,; + gd;. We then have {gA; ¢ }—>{gd,¢) by virtue of the weak
convergence of 4;, while we have (g, — g,4, 4% by virtue of Roellich’s lemma, since
llg, 4% ||,<C. Since the ¢ ’s of this type are dense everywhere, we conclude that 4 and

& coincide as elements of L2 Each field with a finite L? norm can therefore be
mapped by a transformation from G onto the plane D(B)4 — B)=0.

We now show that the background condition is not a gauge condition, even
locally, for L 2. No matter what L  neighborhood of B we take, it will contain different
gauge-equivalent fields which satisfy this condition. In the case of spaces (1), in con-
trast, this cannot happen if the neighborhood is sufficiently small.® As before, it is
sufficient to consider the SU(2) theory and the Coulomb gauge (B = 0). Using Gribov’s
notation,! we take the “spherically symmetric” field

, on 3
Afx) firjn w, 3)
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Here i =2_,(y;/r 0;, where the o; are the Pauli matrices. Field (3) satisfies the
transversality condition d,4; = 0. We apply the transformation g = exp{a(r)} toit. A
direct calculation yields [|4 ||> = 16 § f*(r)dr and

WAZN? = AN + 16n £ [(2f +1) sina +o'%/® ]dr. @)

It is not difficult to specify fields (3) which are arbitrarily close to B = 0 and for which
the integral (4) can be made negative. In this case the extremal point of the orbit, which
also satisfies the transversality condition, lies even closer to B=0. We set
fi= —8(ry— r)r %, where 0 < < 1/2, and & is the unit step function. We obviously
have || f]|,—0 in the limit r,—0. We take a{r) = a,(r/e — 1), where «, is a standard
bell-shaped function with a carrier in the interval { — 1,1), and we assume a, < 7/2.
We then have a> sina>2a/7. In the limit £—0, the positive part of integral (4) falls
off linearly with &, while the negative part falls off in proportion to £'~# and is
dominant. These arguments remain valid when we replace fby Af for all A > 0. The set
of extremal points of the orbits, which is obviously convex and closed, is thus not an
absorbing set; i.e., a linear subspace constructed on this set will not cover the 3;4; =0
plane.

The topology thus changes below boundary (1), and this boundary must bevtaken
into account in determining the actual configuration space of a non-Abelian theory.

I am deeply indebted to B. L. Voronov and V. Ya. Fainberg for a useful discus-
sion.
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