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A qualitative explanation is given for the experimentally observed quantization of
the Hall conductivity o, in units e*/27# for two-dimensional systems in a
magnetic field. The explanation is based on the formulation of the localization
theory in terms of the renormalization group. The difference between o, and ne’/
27#i (6o, ) at finite temperatures is related only to the presence of the dissipative
conductivity o, (|60,,| = ao,,, where « is a number of order 1).

PACS numbers: 73.25. + 1

1. The experimental study of the Hall conductivity o,, in two-dimensional sys-
tems in a strong, perpendicular magnetic field H shows that at low temperatures the
dependence o,,{H ) has a series of plateaus, on which o, is an integer multiple of e’/
27%i. The amazing accuracy with which this quantization is satisfied was already noted
in earlier works."? The efforts of a number of authors® achieved a qualitative under-
standing, but the problem of the theoretical limitations on the accuracy remained
unresolved and it was understood that an exhaustive theory of the phenomenon must
simultaneously describe both the quantization of ¢,, and the Anderson localization of
two-dimensional electrons in the random field of impurities.

In the theory of localization, the Q-field method has been developing successfully
now for several years. With the help of this method, the calculation of any quantity,
for example, the density-density correlation function, reduces to calculating the func-
tional integral®

K, - r')

= SDQ () ~; SpI(1 + MQ () (1 ~ Y] exp U dx F)/f DO(x) expl b,
=0
(1)

where for an electron in a magnetic field' we have

fdeF{Q} =fdr Sp {-%haxx("v’g)’ _21;1 0, QI7,0, 7,01 - iwr(AQ)} , (2)

where @ is a Hermitian 2V X 2N matrix which satisfies the conditions

Q*=1, SpQ@=0 {3)
A is a diagonal 2N X 2N matrix, in which the first N numbers along the diagonal are
equal to 1 and the remaining numbers are equal to — 1.

2, Conditions (3) indicate that all possible values of Q correspond to points of a
Grassman manifold M = U(2N)/[U (N )X U{N )]. When the coordinate r runs through
all points in the plane, the values of Q fill some region 4 in M. The homotopic classifi-
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cation of mappings of the plane onto M is given by the group 7,(M ). In accordance
with the general rules, we have

T U2 NJ/UN) xUN)) = m,(SU(2N)/S[UIN] x U(N]])
= my(S[UN) xU[N)]) = m\(SUN )+ m,(SUN)+ m (U1 Z,) = Z. (4)

Equation (4) can be interpreted as follows: Q is the generalized density matrix
ple,€’) = dlepp*(€'), corresponding to two energy levels € and €', ple,€') admits a trans-
formation of the phases of the wave functions y(€) — ¥l€)e™ ', Y(e') — Y(€')e®), and
only the transformations with the differences ¢ (¢) — ¢ (¢') are physically different. For
this reason, the stationary subgroup of the Grassman manifold M always contains the
group of changes of phase U (1) and the classification of the mappings of the plane onto
M coincides with the classification of mappings of the circle in to U (1). The latter are
characterized by a change in ¢ in circumscribing the circle equal to 27n, where #z is an
integer. Thus the matrix function Q (r) gives for all N the mapping of the plane onto M,
which is characterized by an integer # (multiplicity of the mapping), which is a topo-
logical invariant. Remarkably, for any N°

fdrSp{Q[V,Q V,01} =8nin (5)

In a field theory with the action (2), all values of o,,, which differ by an integer
multiple of ¢*/27r#, are therefore equivalent.

3. We shall discuss what happens when renormalization is implemented, i.e.,
when a part Q,, which is a slowly varying function of the coordinates (Q = U *Q,U) is
singled out in the dependence Q (r), while the integration is performed over the rapidly
varying unitary matrices U. In this case, o,, and o0,, are renormalized, satisfying the
equations

do do, , _ e L
dz'x =Byx Opx Oy )i _d—gy_—ﬂxy(axx’ Oxy)s €10 rH. (6)

Equations (6) describe the dependence of o, and o,, on the linear dimensions of the
specimen L at T = 0. For the initial conditions, determiing o, and o, for a specimen
with dimensions of the order which can be of the magnetic length 7,, we must choose
their values which can be calculated with the help of the kinetic equation. Since the
action (2) does not change when ¢’/2r# is added to o,,, B,, and B, are periodic
functions of o, with the period ¢°/27#i. It is also evident that the change in the sign of
the magnetic field and, therefore, the change in the sign of o,, cannot affect the
solutions of {6). For this reason, 5,, is an even function of o,, and B,, is an odd
function.

Figure la illustrates the phase portrait of the system (6). This portrait is periodi-
cally repeated in each of the bands [(¢*/2m7#in] <o,, < [(¢*/2a#i)(n + 1)]. Combining
the symmetry relative to the change in sign of o,, and periodicity with respect to o,
we see that the phase portrait in each of the bands is symmetrical relative to the center
line o,, = (¢*/4mH)(2n + 1).

Within the framework of perturbation theory (i.e., when o,, >¢*/#), o,, is not

renormalized and does not affect the renormalization of ¢,,. For this reason, for
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FIG. 1. Separatrices and fixed points (a} and integral curves (b) of the system of renormalization-group
equations (6).

o, >e’/#, the integral curves (6) do not depend on o,, and are illustrated by lines
parallel to the abscissa axis. For o, =0, ie, in the absence of a magnetic field,
localization occurs in a two-dimensional disordered system and, for this reason, the
corresponding integral curve (6) coincides with the abscissa axis and terminates at the
origin of coordinates, which is the fixed point in Egs. (6). The points 4 (0,e*n/27#) are
also such fixed points. In view of the symmetry, the center line of each band
0,, = (€°/4r#)(2n + 1) is the integral curve of the system (6). As demonstrated in Ref.
5, nonzero conductivity o,, corresponds to a half-integer value of 2u#io,,/¢’. In the
language of the renormalization group, this means that the straight line
o,, = (€’/4m#)(2n + 1) has a stable fixed point C with o,, #O0.

It is natural to assume that the point C is a saddle point and is unstable relative to
excursions away from the center line of the band. The separatrix relates C to the stable
point 4. Then, all integral curves, except the center line of the band, terminate at A, as
indicated in Fig. 1b. The results of renormalization of o,, and o, are illustrated
schematically in Figs. 2a and 2b. Here, the curves 1 correspond to the dependences of
o, and o,, on H, obtained with the help of the kinetic equation. Curves 2 correspond
to finite L, while curves 3 correspond to L — .

At finite temperature, 7" #0, inelastic processes, which lead to finite conductivity
o, are possible. For this reason, each T corresponds to a length L (T), such that for
L <L {T), renormalization is implemented according to Egs. (6), while for L>»L (T), o,
and o,, no longer depend on L. As T— 0, L (T') — . Thus, the curves in Figs. 2a and
2b correspond to the experimental dependences of o,, and o,, on H at high tempera-
tures (curves 1), moderately low temperatures (curves 2), and at 7= 0 (curves 3).

4. To describe the shape of the plateau in the dependences o,,(H), it is necessary
to analyze in detail the phase portrait near the point 4. This region corresponds to
small values of o,,. We shall therefore examine an electron gas with density
n,<eH /fic. At T =0, the electrons occupy energy levels corresponding to the lowest
part of the Landau level, broadened due to scattering by impurities. The wave func-
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F1G. 2. Results of renormalization of o, (a) and o, (b).

tions corresponding to these levels are localized. The localization lengths L_ corre-
sponding to them are of the order of r,, and are virtually independent of n, up to terms
of order ficn,/eH. For large linear dimensions of the specimen L, o,, and o,, are

proportional to e £7% In this case, the ratio a@ = o.,/0,, is independent not only of
L but also of »,. This means that the integral curve of the system of equations (6),
corresponding to the first Landau subband, is the straight line 0,, = ao,,, and inde-
pendent of the electron density, the values of o, and o,, at L = r,, fall on this line.
For other subbands with L =ry, the points {o,,, 0,,) lie to the right of the line
lo,, —e'n/2m#| = ao,,. In this case, there are two possibilities: either the straight
lines |o,, — e’n/2mh| = ao,, near the points 4 coincide with the stable separatrices
and then as 77— 0
en

L )

as illustrated in Fig. 1b or these separatrices are unstable and then
o, — e*n/2wh|:0,, depends on the number ».

The dependence (7) for # = 1 was observed recently.® In this case, in spite of the
considerable asymmetry of the plateau, « on the right- and left-sides of its wings
coincided and did not depend on 7. Variations of a with ## 1 will make it possible to
determine more accurately the form of the separatrix AC, which determines the theo-
retical accuracy of the measurement of e?/# with the help of the Hall effect. Numerical
simulation could also give important information.

The proposed theory predicts that the relative width of the plateau reaches 100%
in the limit 7 — 0, while the conductivity o, with fields H corresponding to a jump in

o,, is equal to the universal value of the order of ¢*/%.

5. It should be noted that to quantize o,,, in principle, it is not necessary that the
condition @_>1 be satisfied. At w.7<1, it is sufficient that E,w.7/%>1, but, in this

555 JETP Lett., Vol. 38, No. 8, 10 November 1983 D. E. Khmel'nitskit 555



case, 0., ~e¢*E 7/f*>e’/# and, therefore Anderson localization and quantization of

Oy appear only at very low temperatures. Analogously, the use of inversion layers
instead of films with a thickness of angstroms is related not to fundamental reasons
but only to the possibility of observing the quantization of o, at temperatures that are
achievable in practice.

The expression for the action (2), strictly speaking, can be derived either with
w,.7<1 and E >, or with o, 7> 1, but E./fiw.>1, and assuming that the impurity
potential is Gaussian. However, it appears that the result concerning the exact quanti-
zation of o,,, based on topological considerations, is more widely applicable than the
rigorous derivation of (2). The use of the electron-electron interaction and of the many-
valley carrier spectrum requires a modification of the theory. This will be done in the

future.

I am grateful to S. Libby for sending me a preprint and Yu. A. Bychkov, A. L
Larkin, E 1L Rashba, and M. V. Entin for a discussion of the results.

"The last term on the right side of (2) has been derived in an unpublished paper by Pruisken (cited in Ref. 5).
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