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The quantum expectation values in a four-dimensional Yang-Mills theory are
represented in each topological sector as expectation values over the diffusion
which develops in the “fourth” Euclidean time. The Langevin equations of this
diffusion are stochastic duality equations in the 4, = 0 gauge.

PACS numbers: 11.15.Tk

1. We wish to outline a new approach to calculating quantum expectation values
in a four-dimensional Yang-Mills theory [YM (R #)] in the 4, = 0 gauge.” In this ap-
proach, YM (R *} is represented as the result of a stochastic quantization of some three-
dimensional theory whose Lagrangian is a Chern-Simons 3-form (see Appendix 3 in
Ref. 1). Specifically, with an external source in YM (R *X[t', t "]) we consider a matrix
element .

<A" AL E ST = <A"lexp (- H{t" - ') A>T

t" . .
=[DA;exp { —-L fdt fdPx(A? AR +BEBY)+ [d*x J¥Hx)A%x) }5 (1)
A(t')=4', A()=4" o
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where / = 1,2,3;

= 1 ;' = ] 4 .
B, = E'Eiik!'jk L (8 Ay~ QA +g[ A, 4]
and 4 '(x) and A "(x) are given field configurations for which the difference between the
Chern-Simons numbers C' = D[4 '] and C " = [4 "] are determined by the topological
charge g = C" — C’ of those fields 4,(x}) which contribute in integral {1). Here
a1 = 1 24
Cl4] gy [ d*x € (4,04, + 38 A A4, )-

We first consider the case 0. In the given gth topological sector, the Yang-Mills
action is then bounded from below by the value S., = 877¢/g> which is reached only
in the case of instanton solution of the duality conditions, which are written in the
selected gauge as

Ad.=_B..
7 H

2. The quantum fluctuations around the solutions of these nonlinear classical
equations can be described by a transition of these equations to a stochastic nature
through the introduction of a random force n?(x, ¢), a white noise, in them. The
stochastic duality equations are?

Aj=m =B, A (x.1')=A4[(x). 2)

The expectation values for all the 77-dependent expressions are calculated in accor-
dance with

<n®Ck D> =0, <nf (xx) af(y. "> =878, 84 x - y)

and by means of Wick’s theorem for monomials of higher even powers.

Equations (2) may be thought of as Langevin equations describing a diffusion with
an additive noise and a potential drift force

B4 (x)] =—8n*8C[4)/ 84 (x).

Our basic assertion is that the Green’s functions found from (1) agree within a
factor exp{ — S,) with the correlation functions for the diffusion process (2). More
precisely, we have

oy

t

<A”,["|A', f'>J: —anzq/g2<6(A(tn)_“An)exp f dt fdaXAl:‘J[q>’ (3)
14
t

where the expectation value on the right is over the diffusion which we have intro-
duced, and A4 ¢ is expressed in terms of y by means of (2).

To trace the origins of this agreement it is convenient to adopt the compact
notation ¢ ' = 4 {(x), in terms of which an equation like (2) can be written

$(1t)=n'(t) - bi(g), o't')= ¢ 4)

The expectation value on the right side of (3) now becomes (within a normaliza-
tion factor)
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) =<8 ($t") ~ 6" exp [ o(1) () dt>
t

n

t
= [Dnexp (— % [dtie) (o) (") = 9"exp S0) T
t

where ¢ (t) is found from (4). Following Ref. 3, we now find

"

= f Dpexp(—~L s dr (¢ +bib! - 2 )
¢{‘t’)=¢', ¢/t")=¢'" 2 t'
'N . " . .
~(8) § b'a¢)yexp | dY1) T (1) dt, (5)
t ¢

where (S)f denotes the Stratonovich stochastic integral (see Ref. 4 for a definition of
this integral, which is motivated by differential-geometry structures; for a discussion of
its properties; for a comparison with the Itd integral in the geometric formulation; and
for further references). A fundamental property of the (S) integral is the Newton-
Leibnitz formula®

t" . "
(S) [ 8;cdg’=c(®")—c (@)
t’
The use of this formula in (5) for the potential drift force b’ = d,c, which also satisfies
the relation d,b6" =0 in a Yang-Mills theory, completes the proof of Eq. (3).

3. If ¢ <0, then we should begin with the antiduality equation 4, = B,. Corre-
spondingly, the sign of C{4] changes in all the equations, so that the quantity
Sci = 87(C’ — C")/g? is again greater than zero.

Consequently, depending on the topological sector of the theory, we have the
equations

4, +aB=n,, (6)

with ¢ = + 1. The value of the topological charge g determines the method for con-
structing a perturbation theory in (6). Specifically, we adopt 4, =4, + Q, where 4 is
an (anti-) instanton with a given topological charge, and the fluctuations Q against this
background are determined as a power series in 7.

The O-instanton sector can be described by any of the two stochastic duality
equations (6). In terms of the Fourier components (in the limits
t'—> — o0, t" > + ),

Eq. (6) can be rewritten in a form suitable for iterations:
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Af() =Sy (k) [nf(k) - & e 20 £ § d*pAl, (k — p) Af(D)} s

w iae, .k 8. +kk.jw?
= imj “m (k)= i
Sifk) i Dyytk)+ kK +w? D'/ k) k?+w? ’

where we have used the four-dimensional notation k£ = (k,w). For the binary correla-
tion function we then find, in lowest-order perturbation theory,

<AX(k) AL(K')> = (—21{? §926(k + k') S, (K) S, (')
However, we have
Sim(k) Siml — k) =Dy (k)
so that (27)7*6 “?D(k ) is a free propagator, in agreement with the result that follows

from (1). Analogously, we find the following expression for the ternary correlation
function:

<Af(ky) ALKy ) AL (k3) > = (271()5 8k +ka +ks)-aey, )

123
X f %€ S, (ki) D, (kz) Dy (ks) +cyelic ( ijk)

p

It can be shown with the help of the condition », + @, + @, = 0 that the part of this
expression which is proportional to « is identical to a self-doubling and is therefore
zero. Now; using

€mi k(K +0?) =¢,, Kk D, (k),

m in

we find
<Al(ky) ALk )A ke3) >

=1 ! be

-—(277),2 8kt ka +ka}Dkk'(kz\/D,-,-’(kl/Dji'(kz)r?j;;;lkh k2, k3),
where

T3e(k, p.a) = —igf *°C 2m)* B, + 8,0+ 8,4)),

in agreement with the result found from (1). It is also a simple matter to show that the
diffusion is constructed in such a manner that we have (V, 4,) =0.

4. In summary, at the cost of losing the explicit relativistic invariance we have
managed to formally write the quantum fluctuations in YM (R *) as the response of a
quadratically nonlinear differential equation of first order to white noise. The next
necessary step is to test the equivalence of the renormalized perturbation theories in
this approach and in the standard formulation of YM (R *). Another interesting ques-

568 JETP Lett., Vol. 38, No. 9, 10 November 1983 A.M. Semikhatov 568



tion is whether it would be possible to describe a “spontaneous transition to a stochas-
tic state” in relativistically invariant gauges. Finally, with an infinite number of colors
a white noise can be realized by the “frozen-momentum” procedure,” so that there is
the possibility of carrying out a “freezing” program in Eq. (6).

I thank V. Ya. Fainberg for detailed discussions of this study and for useful
comments. I also thank M. Vodzitskii and N. S. Maslova for bringing Refs. 4 and 3,
respectively, to my attention and for discussions of those papers.

URecalling that the theory is derived through a continuation from Minkowskil space, we have
R*3x = (x, x*), where x* is the Euclidean time #; below we will use a dot to represent differentiation with
respect to this time. The orientation of the space R * is chosen such that €5, = 1.

?When Egs. (2) are rewritten in the Lorentz- and gauge-covariant form 1/2 7,,, F,,, = 7,, where 7j,,, are the
’t Hooft matrices,” they generate Yang-Mills equations with a current [, =%,,,V,%,. Here V, I,

=N (12 [Fa 1] = — [#21m:] =0.

3The analog of this formula for the It6 calculus is nontrivial; see Refs. 4 and 3.
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