Solution of the Kondo problem for an orbital singlet
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An exact solution is derived for the behavior of an alloy of a normal metal with a
small admixture d of a magnetic impurity in an orbital singlet state. The solution is
generalized to an arbitrary impurity spin S. Under the condition 28> 2/ + 1,
where / is the orbital angular momentum of the unfilled shell of the impurity ion,
the Gell-Mann—Low function vanishes at some finite point. A nontrivial scaling,
first observed in a one-dimensional quantum many-body system, is analyzed on the
basis of the exact solution.

PACS numbers: 72.15.Qm, 75.30.Hx

1. The Mn ™ ion in a metal is an orbital singlet (L = 0) and has a spin §' = 5/2. Its
term is (3d° ¢S5, ). Accordingly, when this impurity scatters conduction electrons of
the metal, the projection of the orbital angular momentum of the electrons is con-
served. The exchange spin interaction is customarily described by the Hamiltonian'

r

+Jz CF

—

oW .ot
= =, & Coma Come imo %00 SChimo’ - (1)
ARG m=1
ik, k' d, 0’

Here the operator C,,,, represents the conduction electron with momentum modulus
k, spin o = + 1/2, and orbital-angular-momentum projection m; I = (n — 1)/2; and S
is the spin operator of the impurity ion (only the d partial wave of the conduction
electrons interacts with the impurity). Hamiltonian (1) also describes alloys with Co
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(n=25=3)and V (n = 25 = 2) in a strong cubic crystal field.? For arbitrary n and
2S5, Hamiltonian (1), called the “n-channel Kondo problem” in the English-language
literature, is a model Hamiltonian."”

2. It has recently been shown that the exchange models which are customarily
studied in the theory of magnetic alloys are completely integrable, and most have been
solved exactly by the Bethe method.>* An exceptional case is the Kondo problem for
an orbital singlet, {1); a naive application of the Bethe Ansatz to this problem has
resulted in physically meaningless results (see Ref. 5, for example). We recall that some
of the basic conditions for the integrability of exchange Hamiltonians are (a) that the
impurity can be treated as a point impurity and (b) it is sufficient to consider only the
linear part of the spectrum of the conduction band near the Fermi surface.® It turns
out that under these assumptions it is not possible to correctly take into account the
quantum axial anomaly in the divergence of the density of particles with a given
projection of the orbital angular momentum (this difficulty does not arise in the other
exchange models which can be solved). Approximations (a} and (b) lead to a situation
in which the “bare” S matrix of the interaction of the particle with the impurity does
not depend on the energy of the particle. In our case, S = exp(i/6-S),,,0,... is the
tensor product SU(2) ® GL(#n) of the spin and orbital scattering processes. The formal
application of the Bethe method® leads to the result that the physical S matrix, al-
though now dependent on the energy, leaves the spin and orbital channels indepen-
dent. The absurdity of this result can be seen even in second-order perturbation the-
ory. In the present letter we drop the assumption that the interaction is a point
interaction.

3. For this purpose we consider an integrable Anderson model, which describes
the orbitally degenerate shell of the impurity ion, of such a nature that, with the
appropriate choice of parameters, this model is equivalent to the exchange Hamilton-
ian (1):
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and the operator d,,, represents an electron in the impurity shell. Under the condition
0<[U(n — Y}/2 <€, <[U(n + 2)]/2, the ground state of the shell is the orbital singlet
(ng =n, S=n/2, L =0). Models (1) and (2) are equivalent if the hybridization ampli-
tude I" = wple)V? is small enough that all the excited states are virtual. Specifically,
the following condition must be satisfied:

(Ue;— Un—1)[2) >> nT. (4)

4. It is a simple matter to construct a Bethe Ansatz for Hamiltonian (3). For
simplicity, we consider only the hybridization of states with n, =n and ny, =n —1,
assuming Use, — U(n — 1)/2. The two-particle S matrix of the “bare” particles in
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this model is the tensor product
S(k-p) =S (k-p) ® S, (k-p) (5)

Here S, is the matrix of the Anderson model without orbital degeneracy and with
repulsion in the atomic shell; .S, is the corresponding matrix for a model without spin
degeneracy but with attraction,”®

S, (my (K} = (k] 2T @iP )/ (K2F ()i),

where P is the permutation operator which acts in the spin (orbital) space.

A spectral equation for the quantized momenta of the particles is found by “glu-
ing together” the spin and orbital parts:

exp(ik,L ) (k; — € —il)/(k; — €y +iT) = t“(k]./t'"(k].}, (6)

where t“ are the eigenvalues of the operators
N
a = a — =
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The energy of the state, £ = E}VZI k;, now does not break up into independent spin

and orbital parts. These parts are related by Eq. (6).

The quantities t° are well known {see Refs. 7 and 8, for example):
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Here e,(x)=(x —in/2)/(x +in/2); N is the total number of particles; m"/
=32%_;,. M and N/2— S, where S is the total spin, and n, is the number of
particles with orbital-angular-momentum projection n/2 — k.

5. Omitting the technical details and the calculations, we write the integral equa-
tion which describes the impurity part of the distribution of the solutions of Egs. (6),
plk), directly in the Kondo limit (4):

[~

Pk}~ [F(k ~ k') ofk')ak' = (2 chim (k — LIn /T,y ©)
i3
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where H is the magnetic field,

Flk)= Je iwk _tw&_)dw, (10)
200 l_-e—nlw

and T is the Kondo temperature, found from the solution of another integral equa-
tion, which we will not reproduce here. We simply note that under the condition J«1
we have Ty, ~J "e = '/, in accordance with the perturbation-theory results.” We are
interested in the magnetization of the impurity in the external magnetic field:

e ]
(H)= | ofk)dk. (11)
p )
6. We offer without proof a generalization of the results (9)—(11) to arbitrary

values of n and S. We need only a single change, but an important one, in Egs. (9)—
(11): The right side of Eq. (9) becomes

=1 +fdco & 2iwk (e—ln - 28wl —gln+ 2S)Iw|)
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7. Equation (9*) is solved explicitly by the Wiener-Hopf method, so that the
magnetization can be written in the form

Miml? {H}=_4 3/2 J dwoexp(ﬁwlnH/TH (lw+0 yoeon
(12)
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X (1—exp(— 211'nl(.'>3|))'1 .

This expression generalizes the result derived in Ref. 9 for n = 1. Let us analyze (12)
for various values of the parameters H /Ty, n, and S.

a) Strong magnetic fields, H/T,;>1. This region is controlled by perturbation
theory. We find the invariant charge z of the Gell-Mann-Low equation from the final
result of the two-loop approximation’:

LB nizi= nH/Ty.
z 2

(13)

The general requirement of renormalizability would mean that all the physical quanti-
ties are expanded in a series in integer powers of |z]€1. From (12) we have

-]

MyppfH)=S (1-2+ 2 an, S)z* ) H> T, _ (14)
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In the limit #—c we find g, ~n*~2. Accordingly, perturbation-theory series (14)
holds for nz<1, i.e., for Hye" T,

b) Weak magnetic fields, H<T},. Here we expect to find the behavior very differ-
ent for different values of n and S.

(1) At n <28, the ground state of the magnetic impurities is (25 + 1 — n)-fold
degenerate, and M,,,,(0) =S — n/2, corresponding to the strong-coupling limit. This
result means that the fixed point of Hamiltonian (1) is J* = o. At H<T}, the ex-
change interactions are ferromagnetic in nature. Near the ferromagnetic stable fixed
point J* = oo (i.e., in the limit H—0), as near the antiferromagnetic unstable fixed
pointJ* = 0 (i.e., in the limit H— ), the physical quantities are logarithmic in nature.
From (12) we see the “duality” of the high-and low-energy expansions:

oo

My ofH) = (S ="/5) (1 ~2 + 2 aynS- "1, 2Ky, H€Ty . (15)

(2) At n =28, the ground state is a singlet. The fixed point is also the strong-
coupling limit, but the physical quantities behave completely differently:

M (H)= 2 BylnJHIT (16)
Between the regions H«<T,; and Hye" Ty, in which Egs. (14) and (16) apply,
there is a peculiar intermediate regime Ty <H<e" Ty in the limit #—oo:

(H) = l(nln )" 1+ 7in2 .o, (17)
20f,

zmp

(3) The most interesting case is n > 2S. This situation was discussed qualitatively
by Nozieres and Blandin.? They mention that in this case a fixed point cannot be a
strong-coupling limit, since at n>2S this limit is antiferromagnetic and thus unstable.
Nozieres and Blandin argued on this basis that a fixed point of Hamiltonian (1) with
n>2S corresponds to a finite value of the effective interaction, J* < «. This rCSult
would mean that at low energies the physical quantities have a power-law scaling.?
The magnetic moment in the limit H—0, for example, would be

M, o(H) ~H/Ty)%, - (18)

where 0 < @ < 1 is a number which may depend on » or S. It follows from (12) that this
is in fact the case, and we have @ = 2/natn#2. Withn =2,5=1/2,and H < Ty, we

have

Mimp (H)= 2 (H/Tg) > 4y p . (19)
=90

Hamiltonian (1) is apparently the first example of a one-dimensional quantum
many-body system of this type.

595 JETP Lett., Vol. 38, No. 10, 25 November 1983 P.B. Wiegmann and A. M. Tsvelik 595



We wish-to thank V. A. Fateev and S. V. Pokrovskii for useful discussions in
various stages of this study.

YWith n#2S, Hamiltonian (1) may hold for alloys with certain isotopes of manganese whose hyperfine

splitting is comparable to the Kondo temperature.
2The formal possibility of scaling has been discussed previously,'™® but the discussions dealt with the case

n =1, in which there is no scaling.

'J. R. Schrieffer, J. Appl. Phys. 38, 1143 (1967).

*P. Nozieres and A. Blandin, J. Phys. (Paris) 41, 193 (1980).

*N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys. 55, 331 (1983).

“P. B. Wiegmann, in: Quantum Theory of Solids (ed. I. M. Lifschitz), Mir, Moscow, 1982.
°K. Furuya and J. H. Lowenstein, Phys. Rev. B25, 5935 (1982).

°P. B. Wiegmann, Pis’'ma Zh. Eksp. Teor. Fiz. 31, 392 (1980) [JETP Lett. 31, 364 (1980)].
P. B. Wiegmann, Phys. Lett. 80A, 163 (1980).

8P. A. Schlottmann, Z. Phys. 49, 109 (1982).

°V. A. Fateev and P. B. Wiegmann, Phys. Lett. 81A, 179 (1980).

'"YA. A. Abrikosov and A. A. Migdal, J. Low Temp. Phys. 3, 579 (1970).

''M. Fowler and A. Zawadowskii, J. Solid State Commun. 9, 471 (1971).

Translated by Dave Parsons
Edited by S. J. Amoretty





