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Dynamic algebras are derived for the two-center Coulomb problem. The
representations of these algebras are examined. The conditions under which the
representations of these dynamic algebras are equivalent are derived. This new
approach is useful for determining the analytic properties of the two-center
Coulomb wave functions, for finding the recurrence relations among the integrals
of these functions, etc.

PACS numbers: 03.65.Fd

The successful use of representations of the groups'? 0(2,2)®0(4) and
0{2,2)® 0(2,2) in the two-center Coulomb problem has pointed out the need to con-
struct dynamic groups for systems of this type. In the present letter we derive the
corresponding algebras; for the representations we find the conditions for equivalence
of the initial two-center Coulomb problems, on the one hand, and the single-center
Coulomb problems, on the other.

We consider the nonrelativistic Coulomb problem of two fixed centers ¢, and
42(|911>19,|). These centers lie on the z axis and are separated by a distance R; the
origin of coordinates is at the center at the left. We use atomic units. We adopt the
prolate spheroidal coordinates &, 7, a, which are related to the Cartesian coordinates
by :

x = SV -0 —meesas ¥ = S VE =X —neina,

_R ; (1)
z = 2(£n+1)-

The variables £, 5, a can be separated in the Schrodinger equation, and the wave
function #,(£,7,a;R ) can be written

‘P',-(E,ﬂ;a;R) =N]-(R)H; (E.R}E;(n,R)eim"‘. (2)

As an example, the equation for the function 7}{£,R ) is’®
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where E;(R ) is the energy of the system and A;(R} is a separation constant.

We know that for the same values of R, E, A, and m? there exist solutions of the
two-center Coulomb problem for the ¢g,; — ¢, system:
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¢f& n a;R) = M{R) (5 R) =} (n, R) ™ 2)

where N,;(R) and M,(R ) are normalization “constants.”
The function 7}(£,R ) is the radial Coulomb spheroidal function.®

The function 2/{7,R ) is the angular Coulomb spheroidal wave function of the
single-center system Q_ = ¢, — ¢,. The functions 7%(n,R ) and Z(£,R ) are the angular
and radial Coulomb spheroidal functions for the single-center systems @, and Q_,
respectively.

We denote by @ the basis functions of the space of representations of the algebras
which we are deriving. We seek @ as the product of (2) and (2'), with £ =&, 7 =17,,
a=a,in(2)and £ =&, =7, a=a,. in (2').

Straightforward but laborious manipulations lead us to a system of equations for
P:

RZ

~ (€ — n®)H(1,0,)— E)@ =0

R? 3)
3 & -2 ) HQ,Q_)—E)® =0,

where H (i, Q) is the Hamiltonian of the single-center Coulomb system Q, written in
terms of the prolate spheroidal coordinates, for the variables with index *“/”. If Eqgs. (3)
are to be equivalent to the original two-center Schrédinger equation, the following
conditions must be satisfied for both equations in (3):

(1) The values of E must be equal. (2) The values of m? and m3 must be equal. (3)
The separation constants A in terms of the prolate spheroidal coordinates must be
equal.

The derive all the solutions of the Coulomb two-center problem by this approach
we need to consider the following ranges of the variables: — 1<£< + oo;
— 1< < + «o; O<a <27,

Under the assumption that ¢ and % vary independently, we find from (1) that x
and y can take on either real or imaginary values, while z can be only real. It then
follows immediately that Eqs. (3) are equivalent to a set of four systems of equations in
Cartesian coordinates and that each of the two equations of these systems is an equa-
tion for a single-center coordinates (> = x> + y*> + z%) or pseudo-Euclidean coordi-
nates (* = — x* — y?> + z°). Correspondingly, we find the dynamic algebras corre-
sponding to (3):

1) S0(4,2) ® SO(4,2); 2) so” “4,2) ® §0(4,2);
3) S0'4,2) ® S0"(4,2); 4)S0" (4,2) & 50°(4,2),
where SO *(4,2) is the dynamic algebra of the single-center Coulomb pseudo-Euclidean

problem, ) ) 2
—_— ] 2
\/_xz__yz+z2(_i.)__+i - — ¢ g —2E)<I>=0.
8x2 ayz 0z \/_ x2._ yz +22
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The dynamic algebra SO (4, 2} has the generators*

J=trxp, T=r-p—i; T =rp; A= E—F.;— p (r, p),
I | " “
To= —rp?+1); Ta=-r(p> —1); M = =T~ p(x,p).
2 2 r
For these generators, the following correspondence has been established (1<i<3):
L,',-= eijk‘,k P Lia= A;; Loj = M;; Lis =T;; Los=To; Las=T4 Losa=T.

The commutation relation is of the standard form:
Wi Ly V =i( By Llygm * Sgpn Ly =Sy Ly — 844 Ly ) & (5)

The invariant operators have the numerical values C, = — 6, C; = 0, C, = 12. A basis
vector of an SO (4, 2) representation is written as a set of three numbers |ujm|:

Lipjim>=mlujim> J |lpjm>=jj+1)lujm>

(6)
Tolujm> = plujm > (E<0) Talujm > = pjujm > E>0),

The dynmaic algebra SO*(4,2) has the generators Iy, I,, T, J,, M,, I',, A,. These
generators are the same as the SO(4, 2) generators, except that p> = — p> — pl + p?
and ¥ = — x% — y* + 2%, where p, = ( — i)(@/9x,)(I = 1,2,3) The generators J,, J,, 4,,
4, M, M, I, I', become

1
Jy=yp, tapys Ay= o p*—1)+p, @.p)
1
= . = — 2 .
Jy ==~ xp,; A= S¥pP—1+p, (1)
1
T, =-m,; M, = Zx(P*+ D+p (5. p)
1
= . = — 2
T, =—1m,; M, =2y +1)+p,(rp).

If we use the same correspondence as for SO(4,2}), then commutation relation (5) is not
changed, except in the case in which neither of the generators on the left side of (5)
belongs to the subalgebra T, Iy, Iy, J,, 4,, M, I",. On the right side of (5) we would
then have i— — i. The invariant operators have the same values as in SO(4,2). A basis
vector of a representation of the SO*(4,2) algebra is also specified as the set of three
numbers |p jm) (j = — 1/2 + io|, where o is real) and again satisfies conditions (6).
We then find immediately that a basis vector of a representation of the dynamic
algebras of system (3) is specified as the set of six numbers: |, jim ) |u, jm,). We
denote by 1 a basis vector of a representation of the dynamic algebra of the two-center
Coulomb problem, and we seek this vector as the linear combination

Y =[JCiNj1)Co (N J2) Iy my > g ja my > djydis -
The equality of the values of £ and m? yields
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The variable-separation operator A is
R2
2 N + E)M + - H-E
A=y +R{( E) 4, (2 } , [r(H-E)]

In the limit R—0 we find it in terms of parabolic coordinates. In terms of the unknown
vectors ¢, the effect of A is equivalent to that of the variable-separation operators in
prolate spheroidal coordinates (Apsc):

A

- R .
Apsc =J 2+ — 2E RA(E< 0); Npsc =J*+V2ERM,(E> 0)

In general, the equations for C,(4, j,) and C,(4, j,) which follow from the condition that
the values of A are equal in terms of the prolate spheroidal coordinates are integral
equations, whose derivation requires the use of recurrence relations for the coefficients
of the vector composition of a representation of the O (2,1) group (the main series). In
the case of the dynamic algebra SO(4,2) & SO(4,2), the results of Ref. 5 allow us to
reduce the problem to a problem of the equality of the eigenvalues of two finite-
dimensional matrices (E <0) or infinite-dimensional matrices (E > 0). Since we have
E <0|m|< j<n — 1l in the case E <0, the dimensionalities of the two finite-dimensional
problems, which have equal eigenvalues only at certain values of R, are u, — |m| and

— |m|, as was first found by Demkov.® The resulting symmetric three-diagonal
matrices A have the same matrix elements

M g =7(i+1), where: k=j +1-|m],

/ [+ 12 —m? (2 — (+1)*]

wryor o (£<0,
101, ST+ =m 14"+ G+1)]
Moker = R LASCAL I
H 4j+1p—1
As an example, the result of Ref. 6 for the system g, =5, ¢, =1 (E<0)is 4 =1/3,

10/3.
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