Steady-state self-focusing of whistlers
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The self-focusing of whistlers has been studied numerically with steady-state
boundary conditions. The process is halted in the final stage by the emission of a
collapsing mode into a divergent mode.

PACS numbers: 94.30.Qw

The self-focusing of whistlers has attracted interest, in particular, because of the
possibility of some corresponding active experiments in the magnetospheric plasma.
The problem is of considerable theoretical interest, since the self-focusing of whistlers
has some very unusual features, as we will see below,

The results which has been carried out in laboratory experiments' are contra-
dictory. A theoretical analysis*® has shown that wave leakage from a waveguide
formed during the contraction of a beam may play an important role in the self-
focusing of whistlers.

In this letter we report a numerical study in which the simplifying assumptions of
Refs. 4 and 5 were not used. It was possible to follow the self-focusing to its final stage
in these numerical calculations. The results clearly demonstrate a leakage which re-
sults in an end to the self-focusing.

626 0021-3640/83/230626-05$01.00 © 1984 American Institute of Physics 626



We consider the following problem. An axisymmetric right-hand polarized wave
is incident on the boundary of a plasma (z = 0) in the direction parallel to the magnetic
field, which is oriented along the z axis. We write the electric field in the plasma as

C= L 1Bz explikz — ot) ¥ cc. ) m

Here k = 0,0"'*/clo, — »)"/? is the wave number of the whlstler, which is propagat-
ing along the z axis, and @, and @, are respectively the electron plasma and electron
cyclotron frequencies. We work from Maxwell’s equations for a cold plasma and from
the MHD equations, supplemented with the ponderomotive force of the wave. We
introduce the relative density variation v = (N — N,)/N, and the relative variation of
the external magnetic field, b = (B — B,)/B,(N, and B, are the density and the mag-
netic field at » = «). We choose the initial field amplitude to satisfy v<1 and |b| <1 at
z = 0. We will see below that this situation hold for arbitrary z (because of the leakage,
the field amplitude is quite low throughout the process)]. We can then linearize the
MHD equations. In the steady state, they reduce to v =0 and

Vv +[by, totb]=4rf/B, (2)

where we are assuming 3 =47N,T /B <1, and where f is the ponderomotive force of
the wave.

We introduce the dimensionless variables

p=kr, t=kz, E =EJE,|,
E3=8u (1 ~u)B} Bw /w (3)

where u = w/w,. From (2) and the expression® for f we have |b|~8'/*v¢v and

V=|V|2__Ltl(l—2u)2|V_U|2___y_2_ 1.9 (V+ 2uU)|z (4)
' I—u 1—u p op
where
V=E —iE,, U=V- (1-wE +iE) (1 +u)(1-2u), (5)

and E and E, are components of the field E’ in a cylindrical coordinate system.

Under the condition v<1, Maxwell’s equations can be put in the form

i-2+L & )(bl,V+b,2U)+LV By1(v) V+ B, (WU,

a 2 a
L 3%y ¢ LU=By,0)V,
bzl(lT ';‘ ag_z)V - ZI(V) ’
L=9%03p*+ (1/p)d/op — 1/ p?, (6)

L =—=2(1 —2ut)u?, byy = +u)(1 —2u)/u?, by; =4(1 —u)/ (1 ~2u),
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Byy =~ (1 —2u)u?® +2(1 —ufu, Byy =—2(1 —up/ (1 ~2u),
By, = (1 2w/u? + (1 —u)(1 —2u)v | 2u*.

The quantity U in (6) has the following meaning: The wave emerging from the
waveguide (this wave is excited as the result of a tunnel conversion’ of the self-focusing
wave) has the following form® at r—wo:

r Y2 E% exp {ifkir+kz — wt)}, (7)
where @ and £ are the same as in (1), and
k =k (1-2u)""*fu, E2+iES =(1+u)(1 - )ES - iE)/(1 —u). (8)

Working from (8), we easily see that U, in contrast with ¥ [see (5)], must rapidly vanish
in the limit 7 . Furthermore, we can expect U to be a smoother function of  and z
than ¥, since V is a superposition of two waves—the self-focusing wave and the wave
resulting from the tunnel conversion—while the field of the latter wave is largely
subtracted from U. This assumption is supported by the numerical results (discussed
below). We can accordingly ignore the term with 82U /3£ ? in the first of Egs. (6); as a
result, system (6) simplifies substantially, taking a form convenient for numerical solu-
tion.

If the transverse dimension of the beam is significantly greater than k£ ~' and if
v€l, then U=V, and from (4) and (6) we find the Schrédinger equation®

i34 L2 1y + v v=o, 9)
a§ 4(1 —u)

which describes the initial stage of the beam evolution.

System (4), (6), and Eq. (9) were solved numerically by an implicit difference
scheme. The initial field of the beam (at £ = 0) was specified to be

V= Vo(p/s)exp(— p*/2s%). (10)

In addition, for Eqs. (6) we specified U|,_, = V|, _o, IV /95 |, _, = 0. The calcula-
tion region was >0, 0<p <P = 45. At p = 0 we assumed V' = U = 0. At the outer
boundary, p =p,..., we imposed the condition that the energy emerging from the
calculation region was absorbed.

Let us examine the results. Self-focusing occurs when ¥} exceeds a certain criti-
cal value (0.007 for s =21.5 and u = 0.3) In the first stage of the self-focusing, a
tubular wave structure forms and contracts toward the beam axis. For this structure,
there is a smooth change in ¥, and we have U~V and v > 0. In this stage, the solution
of system {4), (6) is approximately equal to the solution of Eq. {9). The end of the first
stage corresponds approximately to Fig. 1b, where |V |2.. = |V (p,)]*~0.09 for
po=11, |U|%.. =0.07 and v,,,, ~0.09. When the transverse dimension of the beam
becomes comparable to the longitudinal wavelength of the whistler, the second stage
begins. At this point the contraction comes to a halt because of the intense tunnel
conversion of the wave trapped in the waveguide into an outgoing wave with the
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FIG. 1. Evolution of a beam of whistlers for ¥ = 0.3, ¥2 =0.013, and s = 21.5. Solid curves—| V|2;
dashed curves—|U |*.

asymptotic form (7). This situation can be seen clearly in Fig. Ic, where we have
V|2 =012, po=6, |U |2, =0.07, and v,,,, =0.1. The energy leakage subsequently
becomes so rapid that |V |2, begins to decrease, and the beam progressively loses its
energy. In Fig. 1d, for example, we have |V |}, =0.02, po=9, |U |} =0.013 and
Voax =~0.02. It can be seen from Fig. 1 that the function U {( p, § ) is much smoother than
V(p,£) and has a width on the order of that of the waveguide. As follows from the
definition of U, this circumstance is the primary reason why the oscillations in Fig. 1

are linked with the leakage.

In the second stage, the solution of system (4), (6) is naturally quite different from
the solution of Eq. (9), which does not incorporate the leakage effect. This situation is
illustrated by Fig. 2.

20

FIG. 2. Solid curve—Position of the field maximum
|U {* dashed curve—position of the field maximum

10 |V|? in Eq. (9), for the parameters of Fig. 1.
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We thus see that the self-focusing is stopped by the energy loss caused by the
conversion of the wave into the mode described by Egs. (8).
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