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It is shown that given an effective cosmological constant it is possible to construct
the asymptotic structure of inhomogeneous cosmological expansion. This
structure would contain the maximum possible number of arbitrary functions of
three coordinates and would describe exponentially rapid local isotropization of
the universe.
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One of the most important problems in cosmology is explaining why the visible
part of the universe ~10?® cm in length is homogeneous' and isotropic to such an
extent. It is well known that among the solutions of Einstein’s equations without a
cosmological constant the homogeneous isotropic solution of Friedmann is a very
separate, particular case. Even in the narrow class of homogeneous models, isotropiza-
tion in the general sense of the word, i.e., equality of expansion velocities (Hubble
constants) in all directions correct up to small corrections, is attained for finite ¢ only
under special assumptions about the initial conditions, while asymptotic isotropization
with #— oo is possible only in type I, V, and VII Bianci models.17 Going over to even
more general inhomogeneous models makes the situation even worse. In particular,
the inhomogeneous quasi-isotropic solution of Lifshitz-Khalatnikov* is close to the
isotropic solution only near the singularity (+—0), while for +— oo it generally becomes
anisotropic and inhomogeneous. Thus, within the framework of Einstein’s equations
without a cosmological term, the isotropy of the universe must be postulated, starting
from observational data.

In this paper it is shown that the situation fundamentally changes if the energy-
momentum tensor of matter contains a positive cosmological term T* = €, 8%, where
€y >0 is the energy density of the vacuum. Below it is not important whether the
cosmological constant is a true constant (€,=const) or is only an effective constant
(then €, =~ const on the strength of the equations of motion over a certain time interval
7). The difference lies only in the fact that in the second case the asymptotic expression
(2) will be an intermediate expression, correct for H ~'<t< 7, where H? = (87Ge, /3)
(it is assumed that H7> 1; the velocity of light ¢ = 1). For applications, however, the
second case is important, in which the universe passed through regime (2} at early
stages of its evolution; in the first case, on the other hand, we obtain only the uninter-
esting prediction of local isotropization of the universe in the distant future. At pres-
ent, two reasonable methods are known for obtaining an effective cosmological con-
stant at early stages of the evolution of the universe: due to single-loop quantum
gravitational effects® and due to a phase transition related to the scalar Higgs field.5”
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The nonsingular asymptotic solution of the equations
1
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which we seek for r—oo is similar to the quasi-isotropic solution,* but differs from it

by the large (maximum) number of physically different, arbitrary functions and by the

fact that it is an expansion near f = o0, rather than at ¢ = 0. we have the series
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where a4, b,4, ¢,5 are functions of three spatial coordinates. The operation of lifting
indices and covariant differentiation are performed below with the help of the time-
independent metric a,;.

The tensor b,; completely determines @,
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where & ,; is the three-dimensional spatial curvature tensor, constructed according to
the metric a,,4. For ¢, four conditions follow from (1):
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The next terms in the series (2) are proportional to integer positive powers of e ~*

which are uniquely determined by a5 and c,g4.

The solution (2) contains four (maximum possible number) physical arbitrary
functions of three coordinates and, therefore, is a general solution® which is stable
relative to perturbations that are not too large.” Two physically arbitrary functions are
contained in a,; and two are contained in ¢,;. Three functions in a,; are eliminated
by three transformations of spatial coordinates, not including time, and the fourth
function is eliminated by the transformation f=1¢+ @(x%), X% = x“
— (1/2H )0 /9x")a*Pe —*' + ..., which does not destroy synchronism, with which
the transformed metric again has the form (2) with a@_; = a,ze =~ 2"%.

Matter with the equation of state p = ke {k = const,0<k < 1) can be smoothly
included in (2) with the required number of additional physically arbitrary functions.
For k = 0 (at the early stages of evolution of the universe this could be heavy metasta-
ble particles or primeval black holes} instead of (4) we have

e=— — el c<0; (5)

The velocity u, is generally a vortical velocity. For k >0 instead of (4) we have
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If O<k<1/3, then €owo exp(—3(1+ k)Ht)us—1,u, o exp(3kHt); k=1/3
€w exp( —4Ht ), for wug—>const#1,u, we™ for (1/3)<k<l:ecexp(—[2(1 +k)/
(1 — k)]Ht), ig—>c0, 4, o exp{[2k /(1 — k)Ht].

We can see that rapid local isotropization with expansion over characteristic time
At~H ' is a typical phenomenon in the presence of a cosmological constant
A = 3H?, In this case, Cy,,, C*™we 0 for t— o, where Cy,, is the Weyl ten-
sor. All inhomogeneous perturbations, except the so-called nonsingular mode of gravi-
tational waves, approach zero with 7w, and the latter remains constant in ampli-
tude, but its characteristic wavelength —c. For this reason, space-time inside a
constant physical volume rapidly approaches de Sitter’s space-time, and the initial
conditions are forgotten.

c=0; eugu, = —

Thus the cosmological constant is the best “isotropizer”: It is capable of eliminat-
ing or extending over very large scales all types of inhomogeneities. For comparison,
we recall that the maximum effect that particle creation can have is to cause the
expansion to reach the Lifshitz-Khalatnikov quasi-isotropic solution.? After the decay
of the effective cosmological constant and the end of the quasi~de Sitter state (2),
perturbations begin to grow once again, but if stage (2} lasted for a sufficiently long
time (in practice, it is sufficient to have Hr~ 60-70), then up to the present time the
homogeneity and isotropy of the observed part of the universe, attained at stage (2),
have not had sufficient time to break down. Thus, in the model of an intermediate
quasi-de Sitter stage (2), we obtain a natural explanation of the approximate homo-
geneity and isotropy of the universe on a scale 10°® cm with only one assumption, viz.,
that the quantity Hr is sufficiently large.

We can say that intermediate stage (2) is an ordering, “antientropy” stage. For-
mally, there is ho contradiction here with the second law of thermodynamics, since at
stage (2) entropy does not disappear, but is diluted, spread out on very large scales.
From a fundamental point of view, it is also interesting that the universe, having
passed through stage (2) and appearing as locally isotropic, on very large scales is
typically greatly inhomogeneous due to the dependence of a,; on the spatial coordi-
nates. From observations of the relict radiation it follows that the universe is approxi-
mately homogeneous and isotropic even on scales ~10%! cm'?, but there are no rea-
sons to expect that this ordering must remain for arbitrarily large scales. The
characteristic size of the region of ordering is of the order of H ~'exp(H7)Z,, where
Z, is the red shift, corresponding to the end of stage (2) (in models constructed in
Refs. 5-7, Z, ~10*%-10*").

I thank I. M. Khalatnikov, S. Hawking, and G. Gibbons for interesting discus-
sions.

Y Of course, other general solutions of Egs. (1) also exist, which concern different physical situations. Thus,
near a singularity, the cosmological term is not significant and the oscillatory Belinskii-Lifshitz-Khalatni-
kov regime occurs.” There is also a solution that describes a solitary black hole with small damped
perturbations against the background formed by a de Sitter space.
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2 An example of a quasi-isotropic anisotropy, which does not disappear as a result of particle creation, was
examined in Ref. 9.
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