Low-frequency oscillations of vortices in rotating He Il

E. B. Sonin
A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR

(Submitted 30 November 1982)
Pis’ma Zh..Eksp. Teor. Fiz. 37, No. 2, 82-84 (20 January 1983)

The low-frequency branch of the spectrum of oscillations of a stack of disks in
rotating He I with large angular velocities corresponds to excitation of an inertial
wave, a well known phenomenon in hydrodynamics of rotating classical fluids, in
the volume between the disks. This agrees with the results of experiments by
Andereck, Chalupa, and Glaberson.

PACS numbers: 67.40.Vs, 47.30. + s

Andereck, Chalupa, and Glaberson'? have recently performed a series of experi-
ments on torsional oscillations of a stack of disks, in which resonances were observed
at frequencies lying much lower than the values that are usually predicted theoretical-
ly for such experiments. In this connection, Andereck ez al. concluded that Tkachenko
waves (transverse sound in a lattice of vortices) are excited in their experiments, whose
frequency, as is well known, is very small. Without stopping here to analyze in detail
this interpretation of the experiments, we indicate only the main problem that has not
yet been solved (by the admission of Andereck and Glaberson themselves, see p. 288 in
Ref. 2): How can the oscillation of disks, introducing perturbations with wavelengths
of the order of the radius of the disks, generate Tkachenko waves whose wavelengths,
according to calculation,’? must be an order of magnitude smaller than the radius of
the disks? In this paper, we propose another interpretation of the experiments in Refs.
1 and 2, based on the old theory of Hall,> which ignores the effect of transverse rigidity
of the lattice of vortices, leading to the existence of Tkachenko waves. However, using
this theory, it is necessary to reject some approximations that are traditional for the
theory, which turn out to be incorrect for the low-frequency branch of the spectrum
studied in Refs. 1 and 2. More rigorous calculations performed by us showed that this
low-frequency branch lies much lower than previously through and has another
asymptotic behavior. In addition, the computed curve of the dependence of the fre-
quency of oscillations on the angular velocity agrees well with the results of the experi-
ments in Refs. 1 and 2.

Hall’s theory® examined the motion of He II in the space between parallel disks
which are, coaxial with the axis of rotation and which execute axial oscillations. Be-
cause of the pinning of vortices, the superfluid component is entrained by the disks
and a measure of this entrainment is the effective density p of the superfluid compo-
nent (which was introduced by Hall) entrained into oscillations by the disks. This
density is defined by the relation [see Eq. (15) in Ref. 3]:
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where a = 202 /w, w is the frequency of the oscillations, {2 is the angular velocity of
rotation, Z, =tanlk, L)/k, L, 2L is the distance between disks,
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k, =+(— 202 Fow)/v, is the wave number of the flexural wavés propagating along
lines of vortices, and v, is the flexural rigidity of the vortices. In deriving (1) it was
assumed that the ends of the vortices cannot slip along the surface of the disks (total
pinning). Hall further simplified Eq. (1), going to the limit @—0 and a—>« [Egs. (16)
and (17) in Ref. 3]. Below we used these simplified equations in interpreting experien-
tal data although they were criticized in Ref. 4. In particular, it follows from them that
the physical resonances (poles of the function p’/p,) exist only in the region @ > 202
and are determined by the poles of the function tan(k_ L), i.e., by the condition that a
half-integral number of wave fits into the length of a vortex with wavelength k_. This
leads to linear dependence of the frequency @ on the angular velocity £2:
2
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where n = 1,2,... is the number of the branch in the spectrum. However, a more
rigorous calculation using the starting expression (1) shows that the shape of the lower
branch of the spectrum n =1 is very different. Figure 1 shows for the two lower
branches of the spectrum n = 1 and n = 2 the old dispersion curves, determined by
expression (2), and the new curves obtained by a numerical calculation of the poles of
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FIG. 1. Low-frequency branches of the spectrum # = 1 and n = 2. The continuous lines correspond to the
poles of the function p'/p,, determined by Eq. (1); the dashed lines correspond to the poles of the function
tan(k _ L)[Eq. (2)]; the dot-dashed line corresponds to the asymptotic curve [Eq. (3)] which the # = 1 branch
approaches as £2— . The dashed lines with the cross marks are drawn through the experimental points
obtained for different distances d between disks: 1 —d = 0.0208 cm, 2 — d = 0,0366 cm, 3 — d = 0.0508
cm, 4 — d =0.0762 cm; for definition of the dimensionless parameters @ and 2 for these points it was
assumed that v, = 1073 cm®s ™"
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the function p'/p, given by expression (1). The graph is constructed in dimensionless
variables @ = wL ?/v, and 2 = 2L */v,. It is evident that the new curve for 1 = 1 lies
much lower than the old curve and it has a different asymptotic behavior for 2— o,
determined by the expression

&= (20)" . (3)

In dimensional variables, the value of this expression coincides with the frequency

w =20 /AL , obtained in Ref. 5, of characteristic oscillations of He II in a cylindri-
cal vessel for the case in which the Tkachenko rigidity of the lattice of vortices can be

ignored [see Eq. (43) in Ref. 5, and in addition, 4 =202 /v, for the case of total
pinning being examined here]. According to Ref. 5, this mode of oscillations corre-
spond to excitation of waves in the bulk with spectrum o’ = (202 }’0*/( p*> + ¢*) (p and
g are the projections of the wave vector on the axis of rotation and on the plane
perpendicular to it). This is a well-known mode in the case of a classical rotating fluid
and is called an inertial wave. Thus the mode corresponding to the lower branch of the
spectrum in our problem goes over into a purely inertial wave as {2 increases. It is for
this reason that the transition from (1) to the simplified Hall equations is not accessible
for this branch, since it can be shown that with such a transition an inertial wave,
which was actually incorporated by Hall in his derivation of (1), although he did not
explicitly write it out and did not discuss it, is discarded in the bulk. The inertial wave
in Hall’s theory corresponds to a velocity field constant in space, since he examined
the limiting case of disks with a large radius, when ¢—0 and this means p—0 as well, if
the quantity w/42 is finite.

Figure 1 shows the frequencies of the resonances observed in the experiments by
Andereck et al.'* for different distances d = 2L between disks. These frequencies are
situated quite close to the theoretical dispersion curve for the lower branch of the
spectrum. The experimental data for d = 0.269 cm, not shown on the graph, since they
correspond to very large £2 % 170, also showed no worse agreement with theory. The
agreement leads to the conclusion that the vibrational mode related to excitation of an
intertial wave in the bulk was observed in the experiments performed by Andereck et
al.. This same mode was observed previously in the experiments in Ref. 6, but in
another region of parameters, in which the slipping of vortices cannot be ignored.
Experiment and theory show that this mode must gradually transform from the inter-
tial wave into a Tkachenko wave, although this occurs for very large values of the ratio
L /R? (R is the radius of the disks or vessel).>’
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