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When a light particle interacts with a bound complex, the decay over distance is

described by a 1/#* law instead of 1/7* law. The corresponding force is unusual in
several respects: It is proportional to the mass of the particle; it acts only in the s
state of the particle; it generates a series of bound states similar to Efimov levels,

ete.

PACS numbers: 05.60. + w

The well-known expression!
Vir)=—-e*a(0)/ (27%) (1)
describes the interaction of a van der Waals particle of charge e with a bound complex
of polarizability

a(@)=2Z"|<0id, I n>e, /(€ - w?~ib)
n

{d is the dipole moment, and ¢, is the excitation energy) over distances greater than the
radius of the complex, R. Expression (1) is customarily applied to electron-plus-atom
systems, for which the parameter meR * is on the order of unity (m is the mass of the
particle, € is a scale value of ¢,,, and #i = 1).

It turns out that for a very light particle,
meR*< 1 (2)

[for the pion-deuteron system and the electron-(muonic atom) system, for example],
expression (1) holds only at

r> (meyv?, (3a)
and changes radically at
R<r< (mey''?, (3b)

1. The Schrodinger equation for the scattering of a light particle by a complex is!

[—A/2m+edV (1r)+H,— E, ~Kk*[2m]¥=0, (4)

where k is the relative momentum, and H_ and E, are the Hamiltonian and energy of
the complex, for which the wave function of the internal motion is ¢.

The potential ¥ describes the effect of the polarization of the complex on the
motion of the particle, averaged over the internal motion of the complex. Correspond-
ing to the motion of the particle is the wave function #(r), which is the projection of ¥
onto the state ¢. The corresponding projection of Eq. (4) gives us
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(Ho— k[ 2m)y=0, Hy=—A[2m+Vr), Vr)=eV (1/n<dE>, (5)

where we have set ¥ = é’ 1¥¢; hence (é » = 1, and the angle brackets denote an average
over the state ¢. The potential ¥ generally depends on the momentum operator p,
which acts on the wave function ¢.

2. For a “rigid” complex, for which the condition me({d ?))"/? < 1 holds, we have
E=1+ [E +k*/2m—H_— Ho 1" ed ¥V (Ur)
and Egs. (5 yield

V(r}=—-—e1—: fdw ma(W) ¥ (1/r) [w—(A +2ip T)/2m]* ¥ (1/ 7). (6)
(1]

The first term in the denominator in {6) is predominant in region (3a); this circum-
stance leads us directly to (1) by virtue of the sum rule a(0) = (2/7)§ (dw/w) Im a(w).
In region (3b), on the other hand, where the opposite situation prevails, the p depen-
dence of (6) is described by a factor

0= M)exp(_lpr)=al 0
r >

which singles out the projection of the wave function # onto the s state of the relative
motion of the particle and the complex. Using the sum rule

o0
S dwIma(w)= 1<d*>/3
o

we then find
Vir)=—me*< d*> 0/ (3r%). (7)

3. Potential (7) depends on the mass of the particle, and this dependence makes
the potential unusual: It is generated by the excitation of the relative motion of the
particle and the complex by fluctuations of the dipole moment of the complex, which
are sensed by the particle specifically because it is light (an adiabatic situation). Fur-
thermore, potential (1) is the result of the excitation by the particle of internal motion
in the complex whose inverse effect the particle experiences.

The very nature of the mass dependence of the potential is remarkable: The force
acting on the particle is proportional to its mass, so that all the particles move in the
field of the complex in an identical way under condition (2) (an “equivalence principle”
for van der Waals and inertial forces). This property, which has been thought to be
peculiar to the gravitational and inertial forces, is also exhibited by simple Coulomb
systems.

4. If the complex has a large polarizability (1 = me({d *))'/* 2 1), then the operator
& in region (3b) is, with respect to the s state, simply f(x), where x = dr/dr, and

d—dt 1-2) i‘%] + (2medx—0)f=0, o=2me<dxf>, V(r)=—of Qmr*).
x

(8)
The 1/7* law thus holds for arbitrary values of A in region (3b).?
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At small values of A, Egs. (8) yield o = 24 /3, returning us to (7). At a certain
A = A °~1, which depends on the structure of the complex, we reach the critical value
o = 1/4, which corresponds to “central incidence”' (in this case, *“incidence on a
complex”). At large values of 4 we have

Yy« cos[(o—1/4)"? In(r/R)+ const ]

and a series of bound states arises, in a number equal to the number of zeros of ¢ in
region (3b):

.(Q;zl_ﬂll_/.z__ In(1/meR?).
m

The energies E, obey the similarity law E,/E, , = const.

5. The situation is reminiscent of that in a system of three resonantly interacting
particles, for which, in the region r, €« # < a (# is the radius of the system, a is the
scattering length, and r, is the range of the forces), a potential 1/977 also arises, as does
a series of bound states—Efimov levels—with properties similar to those that we have
just described.?

We might thus expect some analog of Efimov levels in atomic physics also, e.g., in
weakly bound molecular systems. The corresponding conditions are

€< eé/R, (eéR)™' < m < (eR?*)!, (9)
where € is the effective charge of the complex ({d?) = &R ?).

We wish to thank the participants of the theoretical seminar at the Lebedev
Physics Institute for discussions.

Y"We are ignoring the higher-order multipoles, which fall off rapidly with 7. For simplicity, we are assigning
the highest symmetry to the complex (the expectation values of the angular and multipole moments are
zero). We are also omitting the purely Coulomb term in the interaction of the particle with the complex.
PThis point will be discussed in more detail in a separate paper to be published in the near future.
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