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Wave equations are derived for the probability amplitudes for the angular motion
of degenerate states of a resonant transition induced by elliptically polarized light.
The spectrum of the field-induced splitting of levels is found by quantizing the
azimuthal motion of quasiparticles described by these equations.
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1. In resonant radiative processes, the sum rules for dipole transitions regulate not
only the optical but also the angular degrees of freedom. The level degeneracy along
the direction of the angular momentum, which is associated with these degrees of
freedom, is lifted by a field-induced splitting that occurs in nonlinear spectroscopy.’

In linearly and circularly polarized light, the Hamiltonian of the resonant interac-
tion in the JM angular-momentum projection basis can be diagonalized by virtue of
the axial symmetry. For elliptically polarized light, however, in the case without a
symmetry axis, the field-induced splitting spectrum can be found by solving the secu-
lar equation. The difficulties encountered in solving this equation increase with in-
creasing J. In this letter we wish to propose a new approach, which is particularly
useful in the semiclassical limit, J> 1. This approach is based on wave equations for the
probability amplitudes for the angular motion in the basis of coherent states of the
SU(2) rotation group.>’

The photoinduced normal waves of the angular-motion probability amplitudes
correspond to quasiparticles whose classical analog is the angular momentum. The
angular momenta of these quasiparticles trace out paths which serve as characteristics
of the wave equations.

As an example, we might cite the quasiparticles which were introduced in a
description of a nonlinear-optics magnetic resonance involving a transition in an atom
interacting with linearly polarized light.’

In this letter we quantize the energy of the quasiparticles excited by an elliptically
polarized light wave. The spectrum of field splitting of levels is determined by the
energy spectrum of the quasiparticles whose wave functions satisfy the requirement of
a cyclic behavior during complete revolutions.

2. We consider a dipole-allowed transition between levels with identical values of
the total angular momentum (a J—J transition in atoms; the Q branch in molecules).
We represent the dipole operators of the Hamiltonian of the electrodipole interaction
and the state vectors in a basis of coherent states of the SU(2) rotation group:
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J
> =2 (C[M )2 exp(iME*)lTM>. (1)
M=J

Here C3 ™ is a binomial coefficient, and £ * = ¢ + i In tg(6 /2) is a complex coordinate
in the band 0 < Re < 27, determined by the azimuthal and polar angles ¢ and 8 on the
angular-momentum direction sphere. According to the Wigner-Eckart theorem, the
dipole momentum operators are proportional to irreducible tensor operators, which
are the same, in case of a J-J transition, as the infinitesimal operators of the rotation
group. In basis (1) the Cartesian components of the irreducible tensor operators are

A A 3 N .
Tz=1ag, Tx=JcosE~sm£a£, Ty= —Jsin§ - cosSaE. (2)

We orient the coordinate system in such a manner that the y axis coincides with
the propagation direction of the elliptically polarized light wave, while the z axis
coincides with the major semiaxis of the polarization ellipse. The standard Schro-
dinger equations for the wave functions ¥ (£ ) = (J& |¥ ) of the angular motion of the
resonant-transition states |n) and |m) are

(E-Q)ym(§)=(T,+ikT )n (&),
(E+Q)n(§)=(T,—ik T, m(&). ’ (3)

Here E and 242 are the energy of the states and the difference between the transition
frequency and the light frequency, expressed in units of G,; k = G, /G, is the eccen-
tricity, which varies from 0 to 1; G,,, =4d,,, & 4 [J(J+ 1)2J + 1)] ~ 2 d, s a re-
duced transition matrix element; and %, is the electric field of the light wave.

3. By virtue of the rotational symmetry of the angular-motion equations, we can
distinguish a class of wave functions which meet the requirement of a cyclic behavior,
and we can find the spectrum (E') of the field splitting of the states of the m—n transi-
tion which are degenerate in the projection of the angular momentum. An important
symmetry of the equations is the invariance with respect to the combined transforma-
tion consisting of a rotation R, through an angle 7 around the y axis (the wave vector
of the light) and a simultaneous change of the sign of the energy E, 2 to — E, — 2. In
addition, R, invariance is exhibited by the equation satisfied by the wave function of
the state |m) or |n):

(EZ—Qz)m(§)=(7A"§+k274"x2+kf‘y)nz(g). (4)

The reason for this enhanced symmetry is that Eq. {4) simultaneously describes two
types of quasiparticles—with energies £ and — E—and the transformation R, trans-
forms the wave function of one quasiparticle into that of the other. For the eigenfunc-
tions of Eq. (4), the invariance with respect to the rotation R, allows us to introduce
the quantum number r= + 1, which is the eigenvalue of the operator

R,: Rymg(£)=rmg(£). Since R, operates by the rule R, m(&) = ( — 1)/m(m — &), we
find
(-1 mp(m-§)=rmg (®). (5)

Condition (5) can hold only for definite discrete values of the energy. These quantized
quasiparticle energies can be found by solving Eq. (4) on the real axis:
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(1= k% sin’g) 9f m+ [(2] ~1) k sing +1] k cos§ dm + [ €~ K*J* X (cos” £

+JVsin? §) +kJsinglm=0, €*=E?-Q% (6)

The energy spectrum of the quasiparticles is easily found in the semiclassical limit J> 1
within (¢/J)>~0O(1/J), through the use of the approximate equation

(1 —k%sin?¥) a;m + 2J k? sin £ cos £ 3y m+J? [(¢/J)* ~ k* cos® §lm=0. (7)

The substitution m(£) = (1 — k?sin® £ )2 #(£) converts Eq. (7) to a Schrodinger
equation of the form

a2 M+rp? M =0, (8)
where

P () =[(e/T) 1]

§—k?sin’ § 5= (e/J)? —k?
(1—k?sin?8) (/I —1

Condition (5) is extended to the function .#(£ ). By virtue of the periodicity of the
potential, we can restrict the discussion to the band O<Reé <7 in solving Eq. (8). Two
linearly independent solutions are written in the semiclassical approximation as

£
M:® = Up @I exp {47 fdnp (m) }, )
p

where £, is the coordinate of the turning point p(£) = 0.

The boundaries of the energy spectrum, 0<(e/J)><1, are given by the classical
estimate of the Hamiltonian of Eq. (4). On the real axis, Re§ = ¢, the semiclassical
momentum p(£ ) determines classically allowed and forbidden bands of angular mo-
tions, depending on the values of (€/J )* and k 2. For quasiparticle energies in the upper
sector, from k ? to 1, all the azimuthal directions are classically allowed [p*(£) >0 in the
interval 0 < ¢<27]. The pattern of azimuthal motions of the quasiparticles in the upper
sector corresponds to an above-barrier reflection with two turning points, at the latti-
tudes @, = arctgy — k2/6 and 7w — 6 . These points lie on the imaginary axis IME,
passing through points with the azimuthal angles ¢ = 0, 7. We construct a general
solution from functions (9); imposing condition (5), we find the quantization condition

J [ dnp@)y=nM, (10)

where M is the number of nodes of the wave function in the band 0<d<.

In the lower sector, 0<(e/J )* < k 2, there are two turning points on the real axis, at

o = arcsiny8/k ? arcsin and 7 — &,. In the bands 0<& < £, and 7 — &, < £ < 7 there is
an above-barrier, classically forbidden motion [p*£)<0], while in the band
Eo<E<T — &, there is motion in a well. The quantization of the azimuthal motions is
determined by the well, whose dimensions depend on the quasiparticle energy (€/J )*
and the elliptical parametérs of the light. If the polarization of the light tends towards
circular, k—1, the turning point £, tends toward 7/2, and the well collapses, leaving a
singularity of the quasimomentum p(£ )« [cos '€ | at the point & = 7/2. The contrac-
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tion of the well is accompanied by a simultaneous increase in its depth, in such a

manner that the condition for a semiclassical behavior of the action S on the paths

between the turning points is not disrupted (S> 1). The path-quantization condition is
m- EO

J fE dnpm)y=nM, (11)
0

where M is the number of nodes of the wave function of the angular motions in the
well. In the limit £ = 1 we must take into account the nodes of the function cos’é,
which are related to the substitution m(&) = cos ’§.#(£). Condition (11) can then be
written
- Eg

lim {f dnp@m)}=n(+MJ). (12)

k=>1 &g
It follows from the asymptotic solutions of Eq. (7) in the limit |£ |- that the maxi-
mum number of nodes (M ) of the wave functions of states with angular momentum J is
limited by the value of J.

In conclusion, we wish to point out an interesting analogy between the motion of
the quasiparticles and the rotation of tops. It may be concluded from Eq. (4) that the
quadratic spectrum € of the quasiparticles or the field-splitting spectrum is the same
as the spectrum of an asymmetric top rotating in a gravitational field. The moments of
inertia of this top and the moments of the gravitational forces are of an especially
resonant nature. By varying the eccentricity of the resonant light, we can produce tops
with various symmetries. Axisymmetric tops are formed by linearly and circularly
polarized light. Elliptically polarized light produces an axisymmetric top.?
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