Stability of filaments of discotic liquid crystals
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The stability of a cylindrical specimen of a discotic liquid crystal is investigated.
The critical value of the radius, beginning at which the cylindrical shape is stable, is
found. For smaller radii, the maximum permissible length of the cylinder is
determined.

PACS numbers: 61.30. — v

In recent years, appreciable progress has been made in the study of the properties
of films of smectic liquid crystals,’ due primarily to the assimilation of the technology
for fabricating thin (up to two molecular layers) and homogeneous free (without a
substrate) films. An analogous study of discotic liquid crystals is retarded by difficul-
ties of obtaining free thin filaments. Thus, in Ref. 2, it was not possible to obtain
specimens containing less than 400 molecular filaments. Below, we shall demonstrate
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that these difficulties are of a fundamental nature and we shall also give an estimate of
the possible dimensions of specimens with the characteristic values of parameters of
liquid crystals.

The problem of the stability of a fluid cylinder was solved by Rayleigh® and in a
more general formulation by Bohr.* It was shown that a cylindrical specimen of an
isotropic fluid is unstable relative to separation into pieces with a length of the order of
ten radii. This instability is related in an obvious manner to the surface tension by the
circumstance that the cylindrical shape does not minimize the surface energy. It is
important to note that the instability occurs for any radius of the fluid cylinder.

For a cylinder formed by a discotic liquid crystal, whose axis coincides with the
orientation of the filaments, there are two factors that determine stability. First, as in
the case of an isotropic fluid, there is the surface energy which is minimized by separa-
tion of the cylinder. Second, there is the energy of elastic deformation of the lattice of
fluid columns, which resist the decrease in the radius of the cylinder.

To estimate the effect under examination, we shall use the approximation of an
isotropic fluid and viscosity, and we shall ignore the thermal conductivity. The equa-
tions of hydrodynamics for an incompressible discotic liquid crystal in the form of a
cylinder in this approximation have the following form**:
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Here the z axis of the cylindrical coordinate system is chosen along the axis of the
cylinder, v is the velocity, u is the displacement vector of the lattice of fluid columns, P
is the pressure, p is the density, 7 is the effective viscosity (some combination of Leslie
coeflicients), B is the isotropic elastic modulus of the lattice, and ¥ is the permeation
factor, which describes the motion with a fixed lattice.

The complete solution of the system (1) can be found by expanding the radial
dependences with respect to Bessel functions. We shall, however, take advantage of the
fact that the cylinder is quite thin, i.e., its length L is much greater than its radius R. It
follows from the first equation of the system (the continuity equation) that

v, ~, R >>v,

Ignoring, where possible, the radial-velocity component, as well as the change in the
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axial component of the velocity in the radial direction, we seek the solution in the
following form:

v, = eulr)

v, = ¢afr) X ezt at 2)
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P=y(r

Substituting (2) into {1) and solving the system, we obtain

2iC Cr 2(ap +ng*)C
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where the constant C is determined from the boundary conditions.

The boundary conditions in this case are the conditions for finiteness and contin-
uity along the axis of the cylinder, already included in (3), as well as the conditions for
the stress tensor at r = R:

1 o
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o is the surface tension coefficient, and ¢ is the displacement of the lateral surface of
the cylinder (9¢ /9t = v, ). Substitution of the solution (3) into the boundary conditions
(4) yields the dispersion equation for «,
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The instability (i.e., the growing perturbation) occurs for a > 0. The size of the
regions of instability for fixed-cylinder radius is determined by the wave vectors g,,,,
at which ¢ is maximum. For low viscosities,

2 9.02R
L2 9OR (5)

Umax \/1 _ZBR/O

For high viscosities 7>voRp/2, characteristic for discotic crystals,
o/ n*R? / 2BR
L~ 13 1— — . (59
4p0 g

We note that for 2BR /o> 1 the cylinder of a discotic liquid crystal is generally stable.

We shall estimate the maximum possible filament length for specimens used in
Ref. 2. In this case,

R = T50R, B~ 10° erg/em®, o ~ 10% erg/cm?, p~1 g/cm® n~ 1 P.
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Substituting these values into (5'), we obtain L ~2X 1073 ¢m, which agrees with the
size 20 um found in Ref. 2.

In the above calculations we ignored gravity, which imposes certain restrictions
on the characteristic length L <max{o/g, B /pg} ~(1-10°) cm. The estimates made
above show that the maximum attainable filament lengths more than satisfy this ine-
quality.

In conclusion we thank I. E. Dzyaloshinskii and Yu. M. Bruk for discussions.
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