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The magnetic moments of the nucleons are calculated in nonperturbative quantum
chromodynamics without the use of any models. The magnetic susceptibility of the
quark condensate plays an important role in determining the magnetic moments.
The calculated results agree well with experiment.

PACS numbers: 12.35.Eq, 13.40.Fn, 14.20.Dh

To calculate the magnetic moments of nucleons is one of the foremost problems
of quantum chromodynamics and a problem which has yet to be solved. In the present
letter we show that these moments can be calculated by generalizing the quantum-
chromodynamics sum rules which were proposed in Ref.1 and extended to baryons in
Refs. 2 and 3.

Let us examine the polarization operator

11(p) =ifd*xeP* < O| T { n(x), 7(0) } 10>, 1)
where
np (x) = (ua ¢ 7‘1 ub) s 7# d° eabc' nn(x) = (dﬂC 7# db) e 7;.1 uceabc (2)

are the quark currents with the quantum numbers of the proton and the neutron, and
u® and d ¢ are the fields of the u and d quarks. To find the magnetic moments of the
nucleons we assume that the quarks are in a static electromagnetic field F,,, and we
examine the terms in (1) which are linear in F,
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Proceeding in the spirit of the quantum-chromodynamics sum rules, we will cal-
culate I7 (p) in the region p* <0, [p?|~1 GeV? by means of an operator expansion,
writing (1) as a series in 1/|p?| with coefficients expressed in terms of the vacuum
expectation values of the various operators; in addition, we will write an expression for
the same quantity, /7 ( p) in the form of matrix elements between physical states. Two
important and distinctive features which arise when we follow this procedure for the
polarization operator in the external field distinguish this case from that of a polariza-
tion operator without an external field, IT” p), which is used to calculate masses.

1) New vacuum expectation values, not present in I7‘°( p), arise in the operator
expansion for 7(p) in an external field. Of these expectation values, the most important
in our case is (0|1an!w ¥,(0), where ¢, = ud. In the presence of an external electro-
magnetic field we have (0|¢,0,,¥,|0) #0, and this quantity is proportional to F,,, in
the linear approximation in the field: (0|¢,0,,%,|0) = y,F,, (0|¢#|0) The coefficient
X, represents the magnetic susceptibility of the quark condensate. We assume that y,
is proportional to the quark charge: y, = e, y. This assumption corresponds to ignor-
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ing the closed loops,as is done for the vacuum fluctuations of the instanton type and
confirmed by lattice calculations. In writing the operator expansion we should bear in
mind that since we are interested in terms which are linear in the field the characteris-
tic quantity which determines the power of 1/p” for the vacuum expectation values of
the operators proportional to F,, is not the ordinary dimensionality 4 but the quantity
d.q =d—2. For (0|¢,0,,¥,|0) we have d; = 1; i.e,, the dimensionality is minimal
in this case. The next highest dimensionality is d.4 = 3, since the quark condensate
(0|¢w|0) also has a vacuum expectation value,
(8,/2) <Ol¢,G &,4°9,|0) = e, kF,, (O|yy|0), where G ¢, is the gluon field. A large
number of operators with unknown vacuum expectation values have the dimensiona-
lity d g = 5.

2) In writing /1 ( p) in terms of the matrix elements between physical states we are
primarily interested in the term (O}5|N Y{N | /*|N }{N |3|0)( p* — m?)~?, which cor-
responds to the diagram in Fig. la. This term is expressed in terms of the magnetic
moment of the nucleon and has a second-order pole in p? — m? (m is the mass of a
nucleon). In addition, however, there are terms of first order in p*> — m?, which corre-
spond to the diagrams in Fig. 1b, where the contribution of the intermediate single-
nucleon state has been eliminated at the heavy vertex. A Borel transformation of the
terms of the first type gives rise to a factor (1/M *Jexp( — m?/M ?), while one for terms
of the second type gives rise to exp( — m>/M ?). The terms of the second type are thus
not suppressed exponentially with respect to those of the first type and definitely must
be taken into account.”

The terms in /7 p) in (1) which are linear in F,,, are expressed in terms of three
tensor structures: o,,p + po,,,0,, and {p,¥, —p,v,)p- We will consider the sum
rules for only the first and third structure; the second structure is inconvenient here
because the leading term turns out to be suppressed in the procedure used below, and
everything is determined by the unknown vacuum expectation values of higher dimen-
sionalities. The third structure contains two more momenta in the numerator than are
present in the second structure; this circumstance makes the vacuum expectation val-
ues of higher dimensionalities numerically less important and weakens the role played
by the high-lying states (the continuum) in the sum rules. After the Borel transforma-

tion the sum rules become (for the proton)

2

, 27 4/3 e m2 1027
euM4E1(M}L4 ’+ a3M {*(ed + %eulﬂ- —;‘K+2eu x (M? ———éo~)L lo/2 ]
= (R2/4) exp (= m*/ MP){(u,/M?) + A,] o)
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ma { (e, + ized )L°/9~,~§ed XM? [ Eo(M ) + #<0|7S63w lo>1L%*")

=(X2/4) exp (= m?/ M* )[(1/ M?) +B, ] (@
where

a=(2m)? <0l ¥yl 0>, g, <0IJo,, O2)GE, y10>=mi < DIy (0>,
Eo(M)=1—exp(— W?/M?*), E\(M)= 1—exp(— W2/M*X1 +W */M?), (5)

L=In(M/A)/in(/A) A=~ 100MeV, 22 =2 (27)"A%,

A is the amplitude for the proton transition to the current 7,, defined in Refs. 2 and 3,
W is the continuum threshold, 4 =0.5 GeV is the normalization point, and y, and p;
are the total and anomalous magnetic moments of the proton. The constants 4, and
B, on the right sides of (3) and (4) reflect the diagrams in Fig. 1b. The sum rules for the
neutron can be found from (3) and (4) through the replacement
e, F2e iy oyt 3A,—A, B, —B,,.

To get rid of the unknown constants 4 and B, we apply the operator d/d(1/
M?) 4+ m? to (3) and (4). We then multiply Eq. (3) in the proton version by e, and in the
neutron version by e, and take the difference. We multiply (4) in the proton version by
e, and in the neutron version by ¢, and again take the difference. As a result, we find

two equations relating 12, and 2, which do not contain the unknown parameters y and
K:

'”ped Ky ey =

wla

2*X? exp (m*/ M*) e’ - e3)[o/6(1/ M?) + m? ]EILM
(6)
Hp €~ H, &g = 4am X2 exp(m?®/M*)(e2 — €3 )[ /3 (1/ M*) +m* | L.

We ignore the anomalous dimensionalities and the continuum; then we find?
A %exp( — m*/M?) = 2aM */m. Setting M = m in (6), and solving the linear equations

for u, and u,, we find (e, =2/3,e, = — 1/3)
8 1 a 4 2 a
Bardla,y T a+2ay 7
The magnitude of the quark condensate, a, is known: @ = 0.55 GeV?>. Substitution of
the numerical values into (7) yields u, = 2.96 and u, = — 1.93, which are to be com-
pared with the experimental values u, =2.79 and p, = — 1.91. Incorporating the

anomalous dimensionalities and the continuum does not alter the results within the
presumed error (~ 109%). From (3) and (4) we can determine the magnetic susceptibil-
ity of the quark condensate, y = (300 + 50 MeV)~>. Here y is numerically large, so
that the magnetic susceptibility of the quark condensate must be taken into account in
examining the static electromagnetic properties of hadrons in quantum chromodyna-
mics. We can also find the constants A and B on the right sides of (3) and (4): 4, = 5.3
GeV™2% 4, = —24 GeV™3 B, =22GeV ? and B, = — 3.6 GeV>. With M*~1
GeV?, their contributions to (3) and (4) are comparable to those of the terms zz,, /M .
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UTerms of the same type arise in lattice calculations of the magnetic moments, and for this reason lattice
calculations which ignore these terms*® appear to us to be incorrect.
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