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The effect of shear stresses on the thermodynamic conditions for the appearance of
nuclei accompanying a first-order phase transition in a solid is examined. It is
shown that external shear stresses decrease the phase transition pressure compared
to purely hydrostatic compression.

PACS numbers: 81.30.Hd

On the basis of simple thermodynamic considerations, we examine the effect of
shear stresses on first-order phase transitions in solids. Although there is a large
amount of experimental data on this problem,' a theoretical explanation of the ob-
served regularities has not been given. In the approximation of a spherical nucleus in
.an elastic isotropic medium, we obtain a relation between the hysteresis parameters
with a phase transition and the elastic moduli of both phases. The phase transitions
accompanying the action of external shear stresses, observed in many experiments,?
are examined theoretically. For the example of the phase transition in hydrogen, we
examine the construction of phase diagrams in the pressure-shear plane. We propose a
new mechanism for plasticity, related to a phase transition in the presence of shear,
when the nucleus of the new phase is unstable relative to the reverse phase transition.

Let us assume that the substance can exist in two phases. We denote by f; and v,
the free energy and volume (per atom) of both phases, K; the modulus of volume
compression, and o, the Poisson coefficient (i = 1, 2). We shall examine the conditions
for a phase transition in the presence of hydrostatic uniform compression of phase 1 by
pressure p. Let the nucleus consist of » atoms, occupying at p = 0 a sphere with radius
R. In order to calculate the pressure p’ inside the nucleus, we shall use the solution of
the problem of deformation of a medium with a spherical cavity.?> The displacement of
the medium at the boundary of the nucleus is

PR (P'-p)1+ao)R ' )
3K, 6K,(1-20,)
On the other hand, the volume of the nucleus is determined by the equation of state of

the new phase 47(R + AR )*/3 = nv,( p’). Using the equations of the theory of elasticity
and assuming that the relative jump in the phase volumes is small, we obtian
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We can see that with the transition into the phase with higher density the pressure
within the nucleus is less than p.

To describe the phase transition, we shall use the local chemical potential i, = f;
+ p'v;, where the free energy f; includes the energy of shear deformations, introduced
by Gibbs (see Ref. 4). The nucleus will grow if at its boundary the quantity

A = pp — (4)

is negative. Shear stresses occur in phase 1, and the nucleus is compressed hydrostati-
cally. Using the equations from the theory of elasticity’ for the magnitudes of the shear
stresses and for f;, we obtain

Ap = Ap, + b,
where
'
Ap, =m(p)-m(p), Su=—L—[avp)? (5)

2ui(p)

The quantity Ay, is calculated in the absence of shear stresses. We can see that Sy is
positive and, therefore, 4y vanishes at higher pressures than Au,,. If we are examining
the reverse transition from phase 2 into phase 1, then the shift in the chemical poten-
tial is determined by Eqgs. (3) and (5), if the indices 1 and 2 are interchanged. Shear
stresses now appear in phase 2, so that Ay = Ay, — bu.

Figure 1 shows the transition of hydrogen from the molecular phase to the metal-
lic phase and it also shows the reverse transition. The equation of state for the molecu-
lar phase is taken from the experiment of Ref. 5, for the metallic phase the calculation
of Ref. 6 is used, and we assume that o = 0.35 both for the molecular phase’ and for
the metallic phase. We can see in this figure the hysteresis region characteristic of the
first-order phase transitions.

Let us assume now that the system contains not only an external hydrostatic
compression o; = — pd;, but also shear stresses, given by the parameter s, so that the
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FIG. 1. Difference of chemical potentials of metallic and molecular hydrogen as a function of pressure
under hydrostatic uniform compression: 1) 4x,; 2} and 3) 4u with the transition out of phase 1 into phase 2
and the reverse, respectively.
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components of the shear tensor o3, =0}, =s5, 0;, = — 25, while all the remaining
components ¢; = 0. Because of the spherical symmetry of the nucleus, the change in
the free energy of the entire system contains contributions that are linear only with
respect to the trace of the external stress tensor and, therefore, only contributions to
the free energy can be quadratic with respect to s and there are no cross terms propor-
tional to the products ps and p's. In the case of a phase transition, removal of shear
stresses is thermodynamically favorable, so that we assume, as before that the nucleus
is hydrostatically compressed by a pressure p’. The change in the chemical potential of
phase 1, due to external shere stresses, after averaging over the surface of the nucleus
does not depend on p and p’. We obtain its value from the solution of the problem of
the deformation of the medium with a spherical cavity in the presence of purely shear
stresses at infinity.> The final result is

s*v (p) (1—-0)
Ki(7-501)(1-20y)

Ap=ADpy +8u— 15 (6)

We see that the correction to the chemical potential due to external shear stresses
is always negative and, therefore, the pressure of the transition p to the new phase
decreases. Figure 2 shows the phase diagram of hydrogen in the ps plane at zero
temperature. Curve 1 corresponds to vanishing of the total Au.

For the new phase to be stable it is necessary that the pressure inside the nucleus
p’ fall into the hysteresis region in Fig. 1, i.e., Au{ p) <0 with the reverse phase transi-
tion. The dashed line in Fig. 2 shows the boundary of stability of the nucleus p = 3.5
Mbar. At lower pressures, the nucleus of the metallic phase is unstable relative to the
appearance of nuclei of the molecular phase within it. Since external shear stresses are
eliminated, as a result of the phase transition, this situation corresponds to the appear-
ance of a new mechanism of plastic deformations. Figure 2 also shows the trajectory of
the system under single sided compression; a similar situation is realized in diamond
anvil setups. As the pressure is increased, the shear stresses increase proportionally to
P (segment OA ). At p = 1.8 Mbar, plastic deformations of the specimen, due to virtual
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FIG. 2. Phase diagram of hydrogen in the p-s plane.
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phase transition, i.e., the transition to the unstable phase, should appear and later the
dependence s( p) can be intepreted as the dependence of the yield stress on p (section
AB). The boundary of stability of the nucleus of the metalic phase is reached at p = 3.5
Mbar (point B). Under purely hydrostatic compression, the transition pressure is
aproximately 3.8 Mbar.

The approximation of a spherical nucleus, examined above, is valid at the early
stages of growth of the nucleus, when the surface energy of the interface separating the
phases (o R ?) is not small compared to ndu « R *. As R is increased, deviation of the
nucleus from a spherical shape becomes an advantage; the gain in free energy <R * is
not examined here. The surface energy likewise determines the kinetics of the phase
transition. It determines, in each specific case, the probabilities of two competing
processes of removing shear stresses: appearance of nuclei an plastic deformations
without a phase change.

Aside from decreasing the phase-transition pressures,'? the application of shear
stresses in the experiment will permit obtaining new phases, which cannot be obtained
with purely hydrostatic compression (see, for example, Ref. 8).

I thank Professor E. M. Yakovlev, who helped to formulate and solve the prob-
lem, as well as S. I. Anisimov and R. G. Arkhipov for valuable and useful discussions.
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