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A mechanism is proposed for the “uphill” diffusion of vacancies against the
gradient of a substitutional impurity. The influence of this diffusion mechanism is
manifested in the possibility of unstable behavior arising in the irradiated material.
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During prolonged exposure of a material to ionizing radiation at an energy suffi-
cient to produce vacancies (¥'), certain manifestations of unstable behavior on the part
of the irradiated material are observed in experiments, including the formation of
vacancy pores and segregations of other phases. It is natural to believe that the insta-
bility is a consequence of the appearance of mobile point defects in the system. How-
ever, in the existing theory the instability is introduced phenomenologically,' since the
kinetic equations used to describe the mobile point defects” do not give rise to unstable
solutions for the densities of point defects.

The principal mechanism governing the behavior of point defects are the diffu-
sion, annihilation, formation, and decay of complexes of point defects, the simplest
complex being a substitutional impurity—a foreign atom in a vacant lattice site. The
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kinetic equations incorporating these mechanisms have only stable solutions in the
region of low defect densities if the “uphill” diffusion of vacancies against the gradient
of the substitutional impurity is ignored. This last mechanism arises because the com-
plexes (the substitutional impurity), with an overwhelming probability, move only via
vacancies, and their motion is accompanied by a counterflow of vacancies. Thus the
presence of a nonuniform distribution of complexes in the system automatically leads
to the motion of vacancies, even if the initial distribution of the vacancies is uniform.
This motion of vacancies is not due to their concentration gradient, and amounts to an
“uphill” diffusion of the vacancies. This mechanism (which was introduced by Kurata
et al.” to describe impurity profiles), together with the “uphill”” diffusion of the impuri-
ty via vacancies, automatically gives rise to instabilities in an irradiated material.

To elucidate the mechanism giving rise to the instabilities, it is sufficient to retain
only two equations from the general system of kinetic equations describing the behav-
ior of point defects in an irradiated material-—the kinetic equations for the density n,
of vacancies and for the density #,, of complexes (the substitutional impurity):
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Here n; and n, are the densities of interstitial atoms of the matrix and impurity; D), is
the coefficient of diffusion of vacancies along their concentration gradient; Q is a
source of vacancies; Q,, is an effective source of complexes; a, [, and ¢ are the
coefficients of annihilation, decay, and formation of the point defects mentioned; and
n, is the density of lattice sites in the medium. The term dyn, 4n,, in Eq. (1) corre-
sponds to the proposed mechanism of diffusion of vacancies against the concentration
gradient of the complexes. The term d,n,,4n, in (2} describes the diffusion of com-
plexes against the concentration gradient of the vacancies.? The coefficients d,, and d,
are generally different, in contrast to the treatment of Ref. 3. In Eqgs. (1) and (2) we
have dropped the terms describing the formation and decay of more complex forma-
tions of point defects.

Let us assume that the sources of point defects are such that there exist homogen-
eous and quasistationary solutions for the densities of point defects n\” (I = ¥, I, p, m).
If the deviations from the quasistationary solutions are small, we can linearly analyze
Egs. (1) and (2), seeking a solution of the following form, which corresponds to a
variation of the density of vacancies:
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where A ¢, (r) = — k %$, (r), and ¢ is the irradiation time. Combining Egs. (1) and (2)
and using Eq. (3), we obtain a kinetic equation for the variation of the vacancy density:
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The condition of instability (1>0) is of the form

b 0,2 ’

The method of obtaining Eq. (4) reflects the compensational nature of the mecha-
nism for the instability under study: The “uphill” diffusion of vacancies compensates
the diffusion of complexes along their concentration gradient. Here the quantity
(D, — d,n®) plays the role of an effective diffusion coefficient, and the onset of insta-
bility is in fact equivalent to a local change of the sign of this coefficient. Since the
quantity on the left-hand side of condition {5) is proportional to the irradiation time
[see Eq. {3)], the condition for the appearance of the instability can certainly be satis-
fied. Condition (5) implies that the instability arises at finite dimensions: 0 <k <a™".
The lower limit on k comes directly from condition (5), and the upper limit is due to
the presence of a minimum dimensions in a crystal—the lattice constant a.

We note that Eq. (4) is rather general, since it can be obtained by summing the
total system of kinetic equations describing the behavior of point defects in the medi-
um. In the summation of these equations the terms describing the various processes
involving point defects cancel out each other, since the kinetic equations are equations
of local balance. The contribution to Eq. (4) from complexes higher than the substitu-
tional impurity can be ignored: Their diffusion is small because of their large effective
mass. The use of the entire set of kinetic equations in obtaining the instability condi-
tion leads to a renormalization of the last term in Eq. (4) and, hence, to a refinement of
instability condition (5). Thus, in a system containing only four types of defects—
vacancies, interstitial atoms, complexes, and impurity atoms in interstitial positions—
the instability condition is of the form

D
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where D, is the diffusion coefficient of the interstitial atoms of the matrix;
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and Q, is a uniform source of impurity atoms. Such a system can be considered a
model of a medium which is homogeneously and uniformly bombarded by impurity
atoms. In this case the solutions for the interstitial atoms of the matrix and of the
impurities are quasistationary: n, = n¥, n; = n¥, and the solutions for the vacancies
and complexes are {for 4 = O):
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It follows from the solutions of (8) that two types of instability are possible in this
model: In the case d, <d, the solution for the complexes coincides with the quaista-
tionary solution, whereas the variation of the vacancy density does not dissipate
(A =0): ny, =n) +8n, ¢, (r), and beyond the point of instability (A >0) the local
change in the vacancy density increases. In the opposite case, d,,>d,, the initial vari-
ation of the density of vacancies leads to the growth (for A > 0} of the local density of
complexes:

/d
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By analyzing the behavior of an irradiated medium near the point of instability
without assuming that the deviations from the quasistationary solutions are small, one
can study the structure of incipient instabilities. For example, in the case d, <d,,,
vacancy pores arise in the medium, with a size distribution that is close to that which
is obtained phenomenologically.’
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