Resonance near the Fermi energy in a Kondo lattice

F. G. Aliev, N. B. Brandt, V. V. Moshchalkov, N. E. Sluchanko, S. M. Chudinov, and R. I. Yasnitskii *M.V. Lomonosov Moscow State University*

(Submitted 13 January 1983) Pis'ma Zh. Eksp. Teor. Fiz. 37, No. 7, 299-302 (5 April 1983)

An anomalous increase (by a factor of 40–60) in the Hall coefficient R_H has been observed in the CeCu₂Si₂ superconducting Kondo system as the temperature is lowered from 60 to 4 K. This effect is evidence of the formation of a narrow resonance near the Fermi level in CeCu₂Si₂.

PACS numbers: 72.20.My, 72.20.Pa, 75.90. + w, 74.70. - b

The transition from the magnetic regime $(T \gtrsim T_K)$, where T_K is the Kondo temperature) to the nonmagnetic singlet regime $(T \ll T_K)$ has recently been attributed¹⁻³ in the theory of Kondo lattices to a radical restructuring of the energy spectrum near the Fermi energy ϵ_F . Specifically, a narrow Kondo resonance appears near ϵ_F , and its amplitude grows (while its width decreases) as the temperature is lowered from $T \gtrsim T_K$ to $T \ll T_K$. The appearance of a Kondo resonance may be accompanied, as a result of the coherence of the Kondo screening of the magnetic moments, by the formation of a correlation gap at the Fermi level for certain directions in the Brillouin zone.¹ To the best of our knowledge, however, these effects have not yet been observed.

In this letter we report an effort to experimentally test the theories of Refs. 1–3. We studied the temperature dependence of the Hall coefficient $R_H(T)$, that of the resistivity $\rho(T)$, and that of the magnetic susceptibility $\chi(T)$ for CeCu₂Si₂ single crystals and polycrystalline Ce_xLa_{1-x}Cu₂Si₂ samples ($0 < X \leq 1$) over broad ranges of the pressure ($p \leq 12$ kbar), the temperature (0.05 K $\leq T \leq 100$ K), and the magnetic field ($H \leq 40$ kOe).

The temperature dependence of the magnetic susceptibility of the $Ce_x La_{1-x} Cu_2 Si_2$ solid solutions, measured in a field $H \simeq 0.5$ Oe with a SQUID, has a local maximum (Fig. 1) which probably corresponds to a transition at $T = T_{SG}$ from a paramagnetic state to a spin glass. The temperature T_{SG} (see the inset in Fig. 1) varies nonmonotonically with increasing concentration (X) of the magnetic component in

FIG. 1. Temperature dependence of the magnetic susceptibility, $\chi(T)$, of Ce_xLa_{1-x}Cu₂Si₂ at various concentrations X: 1-0.2; 2-0.5; 3-0.7; 4-0.9; 5-1.0. Inset: Phase diagram of the magnetic properties of Ce_xLa_{1-x}Cu₂Si₂. *P*-Paramagnetic state; SG-spin glass; *S*-superconductor.

 $\operatorname{Ce}_{X}\operatorname{La}_{1-X}\operatorname{Cu}_{2}\operatorname{Si}_{2}$. The amplitude of the local maximum at $X \ge 0.5$ falls off with increasing X, and the maximum becomes much broader. Near X = 1 the $\operatorname{Ce}_{X}\operatorname{La}_{1-X}\operatorname{Cu}_{2}\operatorname{Si}_{2}$ polycrystalline samples become superconductors (curve 5 on Fig. 1).

As the temperature of the CeCu₂Si₂ single crystals (X = 1) is reduced from ~60 to ~4 K, we observe a dramatic increase (by a factor of 40-60) in the Hall coefficient R_H . This increase corresponds to a decrease in the free-carrier concentration from $n_H \simeq 1.5 \times 10^{22}$ cm⁻³ at T = 60 K to 3×10^{20} cm⁻³ at T = 1 K (Fig. 2a). In a temperature interval below a certain characteristic T_0 , which depends on the pressure p, the Hall coefficient remains essentially constant, while the resistivity ρ decreases. The value of T_0 is approximately the same as the temperature (T_{max}^{ρ}) at which a maximum is observed on the $\rho(T)$ curve (Fig. 2b).

The anisotropy (at $\mathbf{H} \| \mathbf{J}$ and $\mathbf{H} \bot \mathbf{J}$) of the derivative of the upper critical field, $dH_{C2}/dT(T = T_C)$, in CeCu₂Si₂ decreases during hydrostatic compression (Fig. 3).

The observed increase in R_H (Fig. 2) as the temperature is lowered from $T \gtrsim T_K$ to $T \ll T_K$ (in CeCu₂Si₂, $T_K \simeq 30$ K) can be attributed to the formation of a Kondo resonance corresponding to the appearance in the Kondo lattice of heavy fermions, with a concentration which is zero at $T \gg T_K$ and maximal at $T \ll T_K$ (see the inset in

FIG. 2. Temperature dependence of the Hall coefficient R_H (a) and that of the resistivity $\rho(b)$ for CeCu₂Si₂. The scale at the upper right shows the Hall concentration calculated from R_H . Curves 1 and 2 were measured at pressures of 3.8 and 6.0 kbar, respectively. The $\rho(T)$ curve was measured at 3.8 kbar.

Fig. 3). In the present study we determine R_H from the field dependence of the Hall voltage U(H) at $H \le 40$ kOe. At such fields, the heavy fermions (with masses $m^* \sim 200m_0$; Ref. 4) are negligible. The measured Hall coefficient (Fig. 2a) thus does not give us the total concentration of electrons in the zone but only the concentration of free electrons—those which are not "stuck" at Kondo centers. If we assume that the decrease in the free-carrier concentration is caused exclusively by the redistribution of these carriers at the Kondo resonance, then the density of heavy fermions in CeCu₂Si₂ increases from $n \sim 10^{20}$ cm⁻³ at $T \sim 60$ K at $n \sim 10^{22}$ cm⁻³ at $T \le 4$ K.

From this point of view, the data suggest that the giant electron specific heat γ in Kondo lattices [$\gamma \simeq 1000 \text{ mJ/(mole K}^2$) (Ref. 4) for CeCu₂Si₂ and $\gamma \simeq 1600 \text{ mJ/}$ (mole K²) (Ref. 5) for CeAl₃; for normal metals, by way of comparison, the typical values are $\gamma \simeq 1-10 \text{ mJ/(mole K}^2$)] results from the formation near ϵ_F of a narrow ($\sim kT_K$), large-amplitude Kondo resonance (see the inset in Fig. 3), rather than from the *f* level, which lies 2 eV below the Fermi level in these systems.⁶

According to Ref. 1, the formation of a Kondo resonance and the appearance of a correlation gap at low temperatures can occur simultaneously. In this connection we do not rule out the possibility that the decrease in $\rho(T)$ is a consequence of a decrease in the effectiveness of the scattering of mobile carriers by the reduced magnetic moments of cerium as a result of the appearance of coherence in the Kondo scattering.

The anomalously high value of the derivative $dH_{C2}/dT(T = T_C)$ (Ref. 8; see Fig. 3 of the present paper) also implies a high state density $g(\epsilon)$ near ϵ_F . The experimental value of $dH_{C2}/dT(T = T_C)$, we might note, is approximately the same as an estimate

FIG. 3. Pressure dependence of the derivation of the upper critical field, $dH_{C2}/dT(T = T_C)$, for CeCu₂Si₂. 1—H||J; 2—H1J. The measurement current J is flowing in the direction perpendicular to the crystallographic C axis in CeCu₂Si₂. Inset: Change in the structure of the energy spectrum of the Kondo lattice as the temperature is reduced from $T > T_K$ (4) through $T \sim T_K$ (3) and $T < T_K$ (2) to $T < T_K$ (1) (T_K is the Kondo temperature).

found from the values of ρ (Ref. 8) and γ (at T = 0.6 K; Ref. 4); $dH_{C2}/dT(T = T_C) \simeq 140$ kOe/K.

The compound CeCu₂Si₂ differs from other known Kondo lattices involving cerium in that the valence of cerium is $v_{Ce} \simeq 3.08$ (Ref. 7; for an ideal Kondo lattice we would have $v_{Ce} = 3$), so that this compound is similar to intermediate-valence compounds. Hydrostatic compression triggers a transition from a Kondo lattice to a variable-valence compound by increasing the deviation of v_{Ce} from an integer value. Consequently, the pressure-induced decrease in the concentration of heavy fermions can be attributed to a lowering and broadening of the Kondo resonance in the course of the transition. The decrease in the state density of heavy fermions is the reason for the pressure-induced decrease in the average value of dH_{C2}/dt ($T = T_C$), which is proportional to $g(\epsilon_F)$.

The rapid growth of the Hall coefficient (Fig. 2a) is evidence that $CeCu_2Si_2$ has a Kondo lattice in which the relative concentration of free electrons (per magnetic center) is approximately one. This conclusion is supported by the nontrivial dependence of the magnetic properties of the solid solutions $Ce_X La_{1-X} Cu_2Si_2$ (Fig. 1), in which there is a gradual transition from a Kondo impurity ($X \le 1$) to a Kondo lattice ($X \sim 1$), which also erases the plateau on the $\rho(T)$ curves which is characteristic of an isolated Kondo

impurity and gives rise to a maximum on the temperature dependence of the resistivity at $X \ge 0.5$ in the series $\operatorname{Ce}_X \operatorname{La}_{1-X} \operatorname{Cu}_2 \operatorname{Si}_2$ (Ref. 9).

As the concentration X is raised above 0.5, the appearance of the Kondo resonance at $X \rightarrow 1$ causes a decrease in the relative concentration of free carriers (per magnetic center), which in turn weakens the RKKI interaction of the Kondo-reduced magnetic moment of cerium and reduces T_{SG} (see the inset in Fig. 1). At the same time, the concentration of heavy fermions increases as $X \rightarrow 1$, giving rise to superconductivity in CeCu₂Si₂.

We wish to express our sincere gratitude to D. I. Khomskii, A. I. Buzdin, and R. V. Lutsiv for a discussion of the results.

- ¹R. M. Martin, Phys. Rev. Lett. 48, 362 (1982).
- ²V. Zlatiĉ, J. Phys. F 11, 2147 (1981).

³M. Lavagna, C. Lacroix, and M. J. Cyrot, J. Phys. F 12, 745 (1982).

⁴V. Rauchschwalbe, W. Lieke, D. Bredl, F. Steglich, J. Aarts, K. M. Martini, and A. C. Mota, Phys. Rev. Lett. **49**, 1448 (1982).

⁵J. M. Lawrence, P. S. Riseborough, and R. D. Parks, Rep. Prog. Phys. 44, 1 (1981).

⁶J. W. Allen, S. J. Oh, I. Lindau, J. M. Lawerence, L. I. Johansson, and S. B. Hagström, Phys. Rev. Lett. 46, 1100 (1981).

⁷E. Umlau and E. Hess, Physica B108, 1347 (1981).

⁸F. G. Aliev, N. B. Brandt, R. V. Lutsiv, V. V. Moshchalkov, and S. I. Chudinov, Pis'ma Zh. Eksp. Teor. Fiz. **35**, 435 (1982) [JETP Lett. **35**, 539 (1982)].

⁹F. G. Aliev, N. B. Brandt, V. V. Moshchalkov, S. M. Chudinov, R. V. Lutsiv, and R. I. Yasnitskiĭ, Fiz. Tverd. Tela (Leningrad) 24, 2385 (1982) [Sov. Phys. Solid State 24, 1456 (1982)].

Translated by Dave Parsons Edited by S. J. Amoretty