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It is demonstrated experimentally that under conditions of (two-dimensional)
"shallow water" Landau's conclusionr that the instability of the supersonic
tangential shear is stabilized for u > (2g* Ho)t t', where 2u is the relative velocity of

countermoving flows, I1o is the depth of the fluid, and g+ is the effective
acceleration ofgravity, is correct. The result obtained corresponds to the theory of

S. V. Bazdenkov and o. P. Pogutse [Pis'ma Zh. Eksp. Teor. Fiz. 37,317 (1983)].

PACS numbers: 47.20. + m

In 1944, Landaur came to the conclusion that a tangential velocity shear in a two-

dimensional unbounded flow of a homogeneous compressible fluid must be stable if

the magnitude of the velocity jump 2u satisfies the condition

u )  t / T  c , ,  ( 1 )

where c" is the velocity of sound. Later, Syrovatskii2 showed that this conclusion is

incorrect in general, since it is not based on an analysis of three-dimensional perturba-

tions, but only two-dimensional perturbations: In Ref. l, perturbations along the flow

velocity (X axis) and perpendicular to the plane of the shear (I axis) were included, but

perturbations along the Z axis, perpendicular to the X and laxes, were not included;

in other words, the wave number k, of the perturbations along the Z axis was assumed

to be 0. It was shown in Ref. 2 that a tangential shear is not stable under all conditions,

in particular, condition (l), with respect to three-dimensional perturbations (k'lO).

Recently, Bazdenkov and Pogutse3 re-examined the instability of a tangential

shear, but with a different geometry, namely; under conditions of shallow water,

whose depth I1o, i.e., the dimension along the Z axis, is negligibly small compared to

the scales ,t of perturbations along the X and ts axes. It was shown theoretically in Ref.

3 that the tangential shear in shallow water must be stable if the condition

u) (2gHs)t /2 ,  (2)

is satisfied, where g is the acceleration of gravity. It is easy to see that (2\ and (l) are

equivalent: In the case of shallow water, the characteristic velocity of gravity waves

(gHoltt, plays the role of the velocity of sound. Stability exists in such a geometry

because for Hs<|perturbations along the Z axis can indeed be ignored (ft,-0), and a

model.r to which the criticisms in Ref' 2 no longer apply, is tealized'

In our work, we addressed the problem of verifying experimentally the criterion

of supersonic stabilization of a tangential shear instability in shallow water. The ex-

periments were performed with the same setup used to study the Kelvin-Helmholtz
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FIG. l. Experimental setup (see Rel 4). l-Paraboloid of revolution with diameter 28 cm (along the upper
edge); 2 and 3-rings rotating in opposite directions relative to the paraboloid. Layers of water supported by
the rings are shaded. The location of the tangential shear is indicated schematically by the thick lines
between the rings. The large arrow in the upper part of the figure indicates the direction of global rotation of
the paraboloid and the small arrows indicate the direction of rotation of the rings.

instability of countermoving flows in shallow water in a rotating system.o The basic
setup (shown in Fig. 1) consisted of a vessel with a parabolic bottom rotating around
the vertical axis with angular velocity Ao-ll s- r, so that the water was situated along
the surface of the vessel in a uniform layer with approximately constant depth. Two
independent rings, each 4.5 cm wide, separated by a distance of I mm, were placed at
the bottom of the vessel. The rings could rotate around the vertical symmetry axis in
opposite directions, so that the angular velocities ofthe rings relative to the paraboloid
had identical absolute magnitudes. The frequency of rotation of the rings relative to
the paraboloid was varied, but always remained less than the frequency of the global
rotation ofthe vessel. The rings dragged along fluid layers situated above them in local
rotation and, in this manner, created countermoving flows in the rotating system of
coordinates. The velocity of these flows on the water surface, as measurements
showed, was approximately 1.5 times smaller than the velocities of the rings. At the
boundary between the rings, there was a discontinuity in the yelocity of the flows,
whose characteristic width .d was approximately equal to the depth of the fluid; the
latter was varied in the range 5-20 mm. The experiments showed that if the velocity of
the countermoving flows z exceeds some threshold 2,, then an instability arises in the
system, leading to formation of vortices, whose dimensions ), along the surface of the
water always greatly exceed the depth of the fluid Ho and the width of the discontin-
uity A. The number of vortices fitting into the perimeter of the line of discontinuity
depends on the subcriticality 6u:u -zr: For small 6a, eight vortices are observed
along a discontinuity of length 63 cm (the size of each vortex is about 8 cm); as the
velocity of the countermoving flows increases, the number of vortices on the line of
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FlG. 2. Excitation of the fourth mode of the Kelvin-Helmholtz instability. The line of discontinuity in the

flow velocity passes through the center of the vortices'

discontinuity (the perturbation mode number) decreases, while the sizes of the vortices

increase correspondingly; the minimum number of vortices is 3. A typical flow insta-

Uitiry i. shown in Fig.-i, and the dependence of the size of the vortices 't on the

velocity of the countermoving flows is shown in Fig. 3. The relatiYe velocity of the

flows is 2u, and the vorticity of tnt flows is parallel to the vector Oo'
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FIG. 3. a-Azimuthal size of vortices as a function of flow velocity, measured at the location of the shear'

on the water surface; b-thfeshold u, of stabilization of the tangential shear instability as a function of the

noiJ a"prft, l-velocity of rings; 2-flow velocity; 3-theoretical velocity 3a'
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The most interesting fact, which is illustrated in Fig. 3 and is the subject of this
investigation, is that the instability being examined does not occur for sufficiently high
velocity of countermoving flows, exceeding the threshold tzr. In this case, the flows are
laminar and the trajectories of test particles on the surface of the fluid look like
concentric circles with centers on the axis of symmetry of the system. The transition
through the second stability threshold occurs with a jump, without intermediate states
characteristic of the transition through the first threshold (Fig. 3a). Correspondingly,
when the flow velocity decreases from quite high magnitudes to magnitudes less than
the threshold ur, three large vortices are formed-As the velocity decreases further,
four vortices are formed (Fig. 2), followed by a larger number of vortices. When the
threshold z, is crossed, the system returns to a stable state with laminar flows. Figure
3b shows the dependetLce of the velocity u, of the second stability threshold (as the
threshold is approached from the high velocity side)t) on the depth of the fluid I1o at
the location of the discontinuity in the flow velocity. The three curves in Fig. 3b are
interpreted as follows: The upper curve is the velocity of the rings relative to the
paraboloid and the lower curve is the flow velocity measured on the surface of the
fluid; the dashed curve is the velocity equal to (2g*Ho)t/', whereg* :g/cosa is the
resultant force formed by gravity and the centrifugal force from the global rotation of
the liquid (see Ref. 5) and a is the angle between the angular velocity vector of the
rotation of the system as a whole and the normal to the surface of the paraboloid at the
location of the discontinuity in the flow velocity (in our experiments cos a-0.6). Thus,
it is evident from Fig. 3b that the instability of the tangential shear is indeed stabilized
with supersonic fluid flow if

u ) (2g*H6)t/2 , (3)

consistent with condition (21, predicted by the theory in Ref. 3.

We thank B. B. Kadomtsev for his interest in this work. S. V. Bazdenkov and O.
P. Pogutse for fruitful discussions, and A. M. Khvatov for help in performing the
experiments.

r)The instability under study exhibits hysteresis. In particular, the threshold u, increases as it is approached
from the low velocity side (Fig. 3a).
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