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Dissipative processes reduce the probability for quantum tunneling. The
temperature dependence of the probability for the decay of a metastable state is
analyzed.

PACS numbers:03.65.Ca

As a classical particle moves through a dissipative medium, a friction force pro-
portional to the velocity of the particle arises. We are interested in how this force
affects the probability for the particle to tunnel through a semiclassical barrier. This
problem has been solved previouslyr for the case ofa zero temperature; in the present
letter we genenlize to arbitrary temperatures. At sufficiently high temperatures the
quantum tunneling is inconsequential, and the barrier is overcome in a classical fa-
shion, involving an activation energy. The transmission probabiliff W is described by
an Arrhenius equation with an activation energy which is generally a smooth function
of the temperature. At low temperatures, tunneling through the barrier is more prob-
able. The transition from one regime to the other may be either a first-order or second-
order transition. The general form of the temperature dependence of the lifetime of the
system in the metastable state is found for a temperature near the critical temperature.
An analytic solution is derived for arbitrary temperatures for the case in which viscous
forces are much stronger than inertial forces, and the potential barrier is a cubic
parabola.

We assume that it is possible to single out in the dissipative system a single
semiclassical coordinate q, which interacts with a large number of quantum coordi-
nates O. The Hamiltonian of such a system can be written

H=pr l?n  +  V (q ,e ) ; v ( q , Q ) =  V ( q ) + s Q t H ( q .

It may be that there is neither a starting potential energy Y (ql nor a starting kinetic
energy, and these energies arise only as a result ofthe interaction. For definiteness, we
describe the Hamiltonian of the temperature reservoir, H (Ql, as a set of a large number
of simple harmonic oscillators. Many of the results are independent of this assump-
tion.

We assume that the tunneling probability is quite low, so that the system manages
to reach thermal equilibrium while the coordinate q is in the classically allowed region
on one side of the barrier. The average transition probability over a time r in this case
is
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Here tfif, tf , and E, are the wave functions and energies of the final (fl and, initial (i)
states. These wave functions and energies should be found in the zeroth approximation
in the barrier transmission. Expression 12) can be written as a path integral over the
vaiable q:

W= I  Dq( t )Spn  exp (3)

the pointsHere the contour C is a broken
(ti + i/27, ti, t y, t;, tt - i/27).

line connecting

In this letter we will be content with calculating the transition probability with an
exponential accuracy. For this purpose we need to find the extreme path along which
we see the system go from one metastable state to another.

There are no such paths if there is motion only in real time. We displace the
vertical part of the contour to the imaginary axis, so that the final points t : * i/27
correspond to a state of the system in the semiclassical region on one side of the
barrier, while the point / : 0 corresponds to the other side of the barrier. we put the
origin of the time scale between /, and t r. on the extreme path the coordinate 4
satisfies the condition

q ( t + i r ) = q ( t - i r ) .  ( 4 )

In the calculation of Spn, Green's phonon functions arise on a Keldysh contour.2
Diagrams in which at least one end of a Green's phonon function lies on a part of the
contour running parallel to the real axis cancel out. This cancellation results from the
symmetry property (4) for the coordinate q and from the diferent signs of the incre-
ments in time on the parts of the contour running parallel to the real axis. These parts
of the contour contribute to W only if 4 deviates from its extreme value. As a result,
the coefficient of the exponential function is proportion al to t , - /, . After the substitu-
tion / : - ir we find, with exponential accuracy.

t n T
w=exp( -A) ;  A= tnspn , *p_ i  j -  oT I+  , i * f  +  v (q ,o ) t \ .  (5 )

The function q(rl h (5) is determined from the condition for an extremum of the
functional A, and, it satisfies the boundary condition q(l/27) : q( - l/2T1. At suffi-
ciently high temperatures, the functional I reaches its extreme value for the function
qlr): qo: const:

Ao = F (qo)fT,

where F (qo) is the extreme value of the free energy as a function of the param eter q. ln
quantum-mechanical tunneling we would have

€
q ( r ) = q o +  ) c , c o s ( 2 r T n r ) .  ( 7 1

n = o "

If the transition from the classical case to the quantum-mechanical tunneling is a
second-order transition, the coefficients a, are small near the transition temperature

{, nV;i, - v(q,n,l',1

(6)
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To, and the action A can be written

A = A o + a o 1  + B a |  . (8)

The transition point 7i is determined from the condition a(Tol:0. We have
assumed that as the temperature is lowered the coefficient of al is the first to vanish.
In this case, we have la^*rl(la,l near [.

The coefficient a, is found from the condition for a minimum of expression (7).
Above the transition point we have A: lo, while below it we have

A - A o -  - a 2 / 4 8 = - ( c ' ) r ( T _ T i l 2 / 4 8 ,  ( 9 )

For the model described by Hamiltonian (l), we have
t r z  T

m  0 O -  |  r t z T
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where D (r) is the Matsubara Green's function,

D(r )=T > D(<,r ,  )  exp ( - ianr) , ,  D( ,^r -  )= -  ,  , ,Or  ̂ ,  ,
_ n  

e x p ( - i t ' s n r ) i  D ( a n ) = -  E  
o ) r k +  s r r r ;  

a n = 2 t T n .  ( 1 1 )

Substituting expression (7) for the function q(r) into (10), and expanding it in powers of
ar, we find

e=rz Tm + I r ' , l4T + (D, -  Do ) /47 ,

V,,

2  ( l6 f  Tzm + Y"  +Dz -  Do\ ) o2l

The derivatives are evaluated at the point 4o. If the coefficient ,B is greater than zero,
the transition at T : 7o is a second-order transition. It follows from (12) that the cubic
term in the expansion of the potential in powers of q - qo corresponds to the onset of
the second-order transition. The oscillators with frequencies ar1 greater than the reci-
procal tunneling time cause a renormalization of the mass m and of the potential Y(ql.
The interaction with low-frequency phonons gives rise to the viscosity. It follows from
the derivation of the Langevin equation,in the classically allowed region3 that the
viscosity coefficient 7 is related to the Green's function D at low frequencies by

D ( a n ) =  D o  +  q l a n l .  ( 1 3 )

Renormalizing the mass and the potential in (10), using (13), we find
' ' : r . l * . . d q , ,  

- * . .  t t  : -  @ G ) - q G ) ) ,  ] D . -Alq(r) l= I  dr l  ^ (-)  + w(q) +-- I  dz,: : ] - j - --- j - : . -  f  .  (14)
- r t z T  L 2  
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I
The function q(r)ingal is continued periodically: qft + a/Tl: q(rl. At ?": 0, expres-
sion (14) becomes the same as that derived in Ref. l.

Let us examine the interesting case in which Y*(qlis a cubic parabola:

v (q)= 3 vo(qlqi' (r - !3) .'  
3 q o '
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we further assume that the viscosity 7 is large, (qqo)t>6m*zo, so that we may
ignore the first term in (la). In this limiting case q(r) satisfies the equation

6 V o 4 , ,  - , , . ?  = ,  d q | )  I-  -  
r  \ r -Q la i l  + -+d7t  - - - : - -  - -=  

Q
t l o  T _ *  d T 1  t 1 - T

The solution of Eq. (16) is of the form in (7), with

( 1 6 )

( 1 7 )

o o =  - e o  ( 1 - T l T * ) , a, = 2Qo TIT* exp (- bn ),

T * =  3 V s / r n q f ,  c t h b =  T * l T .

Substituting this value of q(r) into (14), we find

o = !:- ,: - + (rtrd,t , To=T* ( I -€?1* VJn'q3 )). ( 1 8 )

In (18) we have retained terms of first order in m*. At z:0, this expression agrees
with the result of Refs. 4 and 5.

These results apply to the case in which the system is nearly at thermal equilibri-
um before the tunneling occurs. The method used here can also be applied to tunneling
in nonequilibrium systems.

We wish to thank S. V. Iordanskii and E. I. Rashba for a discussion of these
results.
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