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A new unscreened mechanism for light scattering by free holes has been found in

semiconductors with a valence band of symmetry fr. This scattering results from

fluctuations in the density of the quadrupole moment of the holes. Although heavy

holes do the scattering, the mass of the light holes determines the Thomson cross

section.

PACS numbers: 78.20.Jq

At a high current-carri., "on"entrution n the conventional mechanism for light

scattering by free carriers involves "fluctuations of the effective mass" caused by an

anisotropy of the energy spectrum. r-3 In the present letter we show that in the case of

degenerate bands there is another scattering mechanism, which involves fluctuations

in the density of the quadrupole moment of the holes. In semiconductors whose hole

constant-energy surfaces have a large ripple (Si, GaAs), this new mechanism changes

the nature of the scattering, while in semiconductors with a slight ripple and a large

difference between the effective masses of the light holes (m.) and the heavy holes

(rnr) (Ge) this mechanism is the sole mechanism for scattering with a small change in

frequency at low temperatures Z.

Bir and Pikusa have shown that the Hamiltonian for the interaction of holes with

an energy e4A (A is the spin-orbit energy) with an electromagnetic field of frequency

a , 4E , /fi, where E" is the width of the energy gap of the semiconductor, can be found
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from the Lattinger Hamiltonian, by replacing the ordinary momentum by the general-
ized momentum and by singling out the terms containing the field. Since the light- and
heavy-hole states have identical parity, as in the case studied in Refs. t and 2, the
scattering is dominated by a term quadratic in the field which can be written conve-
niently,

p2

K in, = 
fi;, {tt, l '  - TAiQ,rAy), i!}

where A is the vector potential of the electromagnetic radiation, the operator

represents the dimensionless quadrupole moment of the holes, the operator J repre-
sents the total angular momentum of a hole, y and y, are parameters of the Lattinger
Hamiltonian, and m is the mass of a free electron. The first term in (l) gives rise to a
scalar scattering by fluctuations of the hole density, which are screened. We will
therefore ignore this term. The differential cross section for scattering of a photon
{kr,er,ar) into the state (k",e",arr) is

d z o  _ l l t ' t \ '
a.as t  

-  
i \ i r rJ [  

-exd- ta l f l l - ' "1 '  t , { r4 t

xn"| atit:lr llei{q,r/,gn1-q,o)l), (3)
0

whereq-k l  -k" ,ar :o)1 -&)srandQ,o(q, t )  isaFour iercomponentofoperator(2) ,
written in the second-quantization representation.

Under the condition mslrnl, and at low frequencia a4e /fi $ is the chemical
potential of the holes), only intrasubband light scattering is important. Since the
heavy-hole state density is higher than the light-hole state density, the light is scattered
by the heavy holes.

In calculatin g the ot dependence of d 2 o / dofi O we focus on the case of infrequent
collisions, qurr)1, where u6 is the Fermi velocity of the heavy holes, and z is their
relaxation time. From energy and momentum conservation during the scattering,

e(p + D'q) - e(pl =fta (41

we find that d2o/dadO isnonzero only at a4QUr.In the case of interest, therefore, we
must consider the spatial dispersion.5 To calculate the retarding correlation function
in (3) we therefore use the kinetic equation incorporating the electric field E(q,ar)
produced by the charged particles themselves.s A kinetic equation of this type has
been solved in the collisionless limit by Gurevich et al.6 in a study of the absorption of
longitudinal sound. Corresponding calculations yield
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where Z is the crystal volume, fi(e) is the Fermi distribution function, and Q $) is the
convolution of operator (2), averaged over the heavy-hole state with momentum p,

with the vectors e, and e$:

0(p) - < vr. {r) tu;6,n,f r *r(n).r .= , 9'1+p'3 ) -.fi , (6)

With an accuracy to qrQl, where r is the screening radius, the electric field is
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It can be seen from (5) that in the collisionless limit the parts of d2o/dadO due to

fluctuations of E(q,ar) and of the quadrupole momentum g(p) can be distinguished

easily; the p-independent term of 0 F) makes essentially no contributionto dzo/dofiO

because of the screening. In particular, these contributions to the cross section are

simply additive in the backscattering of linearly polarized light. In this case, under the

condition ny(m"T\3/2/fi3, the cross section can be written

d 2 o = V lF r ( q, o) + (erer\zFz (q, o)l rd a d  I

where
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is the term due to fluctuations in the hole quadrupole moment, while
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is the term due to fluctuations of th'e field E(q,ar). The two contributions are shown in

Fig. l. We see from expression (8) that in the case erle" the cross section is determined

by -F,(q,ar). In the case erlle", both Fr(q,co) and Fr(q,col contribute to the cross section;

near @ - quF we have .F2)1q1. The reason why the fluctuations of the density of the

hole quadrupole moment are relatively inefective near @ : qut is that, as follows from

(4), the only holes which can become involved in backscattering in this frequency range

are those whose momenta are parallel to q. It can be seen from (6), however, that the

unscreened part of the quadrupole moment of these holes is transverse with respect to

the vectors e, and e" in the case of backscattering. The part of dzo/do;dO'due to

fluctuations of E(q,ar) is determined by the imaginary part of the reciprocal longitudi-

nal dielectric function of the holes, which has a threshold singularity at a-qut:

Fr(q,ol aln-22ro/(r't - 4url.

At high temperatures, Tyfi(a, - @s), the fluctuations are classical.T In this case

the integral scattering cross section do/dO can be calculated without making any
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assumptions regarding the role played by collisions. It can be seen frorr, i3) that do/dg
is determined by the correlation between the fluctuations of the quadrupole-moment
density at the same time. In this case we can Set e : O in do/d0 Ref. S). Incorporating
the screening in (3) then leads to the condition that the number of holes is constant. It
is clear from symmetry considerations, however, that homogeneous fluctuations of the
quadrupole moment and fluctuations of the number of holes are statistically indepen-
dent' In the statistical averaging we can therefore use, equally successfully, either a
canonical distribution or a Gibbs grand canonical distribution.i Th" latter approach is
simpler. Integrating (3) over the frequency, and using (6), we take the statistical ayer-
age, finding
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we see from (l l) that the Thomson cross section for the type of light scattering under
consideration here is determined by the effective mass m/y-*r.ho, degenerite hole
statistics, the number of scattering particles is equal to the num6er of.heavy holes in a
layer of thickness of order T near the Fermi surface; for nondegenerate statistics, the
number of scattering particles is equal to the total number of he-avy holes. The reason
for this result is that symmetric intrasubband light scattering results from virtual
transitions of holes into a different subband, which are incorpJrated in Hamiltonian
( 1 ) .
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