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The presence of spin scattering of conduction electrons distinguishes the metal-
insulator transition in a disordered system of interacting electrons from
concomitant magnetic transformations and greatly simplifies the problem. A
scaling theory is constructed for the case which is most often realized
experimentally. It is shown that there exists a single-parameter renormalization
group, and the inverse resistance of the specimen (conductance) plays the role of the
charge. The frequency and temperature dependences of the conductivity in the
critical region are found.

PACS numbers: 72.60. + g

One of the main unsolved problems in the theory of disordered systems is the role
of electron interaction in the metal-insulator transition. A scaling theory was proposed
in Ref. 1. In contrast to the scaling theory of the Anderson transition for noninteract-
ing electrons,”™ this theory contains two charges: 1) a dimensionless total conductivity
G = 7#/e’R (R is the resistance of the specimen) and 2) a single particle density of
states, which, as erroneously assumed in Ref. 1, enters into Einstein’s relation relating
the conductivity o and the diffusion coefficient D. Actually,”” o/e?D = N /du (N is
the electron density, and u is the chemical potential of electrons) and it does not
change greatly as a result of a metal-insulator transition. In addition, only exchange
interaction between electrons leading to corrections to the conductivity that are inde-
pendent of the interaction constants®® are included in Ref. 1. Renormalizability was
proved in Ref. 7 in the presence of electron interaction in perturbation theory, for the
case in which all effects in the Cooper channel are missing. It was proposed in Ref. 10
that the interaction in the diffusion channel be classified according to the total spin of
the electron and hole j. Here all corrections due to interaction with j = 0 are indepen-
dent of the interaction constants and have a universal character.

If the system contains a paramagnetic impurity, then scattering by these conduc-
tion electrons suppresses both Cooper corrections as well as diffusion corrections with

j = 1.'>'12 For this reason, if 77, <# and L>/Dr, (L is the size of the specimen and T’
is the temperature), then the total correction to the classical conductivity G, is deter-

mined by the interaction with j = 0. For L < L, =D /AT and d = 2, where d is the
dimensionality of the specimen, this contribution has the form

G~Go=~1n’;— ) (1)

where [ is the free path of electrons. This means that the renormalization group has a
single charge G:
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and for G>w B =(d —2)— 1/G. For small G, the conductivity decreases exponen-
tially with increasing L due to localization of electrons and 8 = In(G /G,) < 0. Equation
(2) with this asymptotic behavior of the function 3 (G ) means that in the presence of
electron interaction only the dielectric phase is realized in the one- and two-dimension-
al cases. In addition, the localization radius & is the same as for noninteracting elec-
trons, but without spin scattering. For example, for d = 2,

&~1lexpG, = lexp|p.l/#),

where p,. is the Fermi momentum of electrons. We note that in the presence of spin-
spin scattering for noninteracting electrons &~1exp(ppl /A" ie., the interaction
leads to a sharp decrease in the localization radius with pgl/#i> 1.

In the three-dimensional case, there exists an unstable fixed point, corresponding
to the mobility threshold and absence of a jump in activity accompanying the metal-
insulator transition. However, there are no reasons to assume that the critical index of
the correlation radius coincides with the corresponding index in the theory of nonin-
teracting electrons.

As the mobility threshold is approached semiconductors exhibit a large number
of singly occupied localized states because of Hubbard repulsion and nonuniform dis-
tribution of impurities. Elastic scattering by these states leads to a finite spin relaxation
time."* For this reason, the theory constructed must describe the metal-insulator tran-
sition in semiconductors.

At finite temperatures, according to the scaling hypothesis, the conductivity has
the form (d = 3)

e ,
0= —— L.). 3
TRALES (3)
As the transition to the insulating phase is approached, we have £&— 0. If £<L ., then
flE/L;)y=A + B(£ /L), where A and B are numbers of the order of 1. In this region
the correction to the conductivity is therefore proportional to /7 .® For £ L,

2
a=C—eh~\/T/Dh (c~1), (4)

Using Einstein’s relation, we obtain

e? N TV3 3 C o
o= — sz____T i3 ; D=2 (C— 2/3’. L= (— 1/3
R O D n S ) )
We shall now estimate the electron—electron collision time. According to Ref. 15,
~ h - a[L 1 (6)
T, N Ly

Substituting (5) into (6), we obtain for £>L,,
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hrl=aT. {7)

ee

Relation (7) shows that in the critical region the condition 7', >#, i.e., the Fermi
liquid description of electrons, breaks down and the lengths L, and L,, = Dr,,
assume the same order of magnitude. In the critical region there are no temperature-
dependent scales other than L.

If the frequency of the external field 2> T /#, then the characteristic length L,
=D /42 and for L, <&

2

€ aN i/3
U(Q)N—};(Q*a;*) . (8)

Relation (8) was obtained previously for noninteracting electrons in Refs. 4 and 16-18.

We shall now examine the case in- which there are no paramagnetic impurities,
but there is strong spin-orbit scattering. This situation is realized, for example, in cubic
p-type semiconductors and in heavy metals. Without the electron—electron interaction,
ford = 2, B (G ) has the form shown by the dashed line in Fig. 1. For G—w S (G) =G/
24 >0.

Spin-orbit scattering suppresses the contribution of the interaction with j =1,
leaving the contribution of the interaction with j = 0 unchanged.'%'® For this reason, if
interaction effects in the Cooper channel are ignored, then for /D1, =L, <L<L,
sL,, (7, is the spin relaxation time with spin-orbit scattering)

SO

1. L
G=G In = 9
* 2 ®)

i.e, for G>1 B (G)=d — 2 — 1/2G. This means that the graph of the function 5 (G ) has
the form shown by the solid line in Fig. 1 and corresponds to localization of electrons
with d = 2 and p./>#. In this case, £ ~£J/I>&,, where £, is the localization length of
noninteracting electrons with potential scattering. The temperature and frequency de-
pendences of the conductivity with d = 3 in the critical region in this case are also
described by relations (5) and (8).

In conclusion, we note that the simplification of the problem of the metal-insula-

FIG. 1. Gell-Mann-Low function £ (G} in the presence of spin-orbit scattering in two- and three-dimensional
cases. The solid and dashed lines correspond to cases with and without electron-electron interaction.
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tor transition, taking into account the finiteness of the spin relaxation time of conduc-
tion electrons, is apparently related to the fact that the magnetic transformations
accompanying the metal-insulator transition in disordered systems can be ignored in
this case.
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