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A new model that gives a unified description of the formation of nematic and
smectic phases of liquid crystals is proposed. Including in this model the influence
of smectic fluctuations on the transition from the isotropic liguid to the nematic
phase has permitted explaining for the first time the anomalies in the
thermodynamic quantities in the isotropic phase of liquid crystals with a narrow
nematic region.

PACS numbers: 64.70.Ew

1. In studying phase transitions in liquid crystals, it is necessary to take into
account their effect on each other. This is due to two circumstances: 1) many liquid-
crystalline transitions are second-order transitions or first-order transitions that are
nearly second-order, tranmsitions (i.e., they are accompanied by quite strongly devel-
oped fluctuations; 2) the region of existence of mesophases, as a rule, is quite narrow
and transitions from one liquid-crystalline modification to another turn out to be close
to each other and strongly interacting (see Refs. 1 and 2).

The purpose of this paper is to construct a model that gives a unified description
of transitions to the nematic and smectic phases and thereby includes their influence
on each other.

In contrast to all known models, we shall assume that the smectic phase, just as
the nematic phase, is described by a tensorial order parameter S;;. S;; is a symmetrical
traceless tensor of rank 2, whose uniaxial mode has a minimum at some k = ko~L 1,
where L ! in dimensionless units is a quantity of the order of the length-to-width ratio
of the molecule. This model can be obtained in the phenomenological theory from the
usual Landau—de Gennes Hamiltonian for a nematic' (with some additional conditions
on the constants of the nematic), if terms of sufficiently high order in the gradient
expansion are included and the short wavelength part of the nematic order parameter
Q,; is separated (which plays the role of §;;).

2. The Hamiltonian of such a system has the form
H=Hy +Hg,, +Hpy,y (1)
where
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Here H, and Hg,, are the free Hamiltonians which describe the transitions to the
nematic and smectic phases, respectively; H,,, is the Hamiltonian which describes the
interaction of the nematic (Q,,) and smectic (S;;) order parameters; R | and 4 §] are
the tensors of the inverse susceptibility of the nematic and smectic order parameters.
In the single-correlation-length approximation, the tensor R f‘f is diagonal,

Ril = ay@ri It @
where
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plays the role of the unit tensor; 7 = (T — T'*)/T * is the dimensionless deviation of the
temperature from the critical value (7" *), obtained by extrapolation from a region far
from the bleaching temperature (T, ), and r, is the direct correlation radius of nematic
fluctuations, measured in units of the average distance between molecules. Because of
the interaction with the nematic, the cubic invariant, which couples the uniaxial smec-
tic modes, vanishes in the nematic region.

The spectrum of the uniaxial mode, which describes smectic ordering, has the
characteristic form' of Brazovskil’s spectrum®*:
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(3)
where A4 = (T — TW4)/TM), TW4) = (T'™) — AT) is the critical temperature of the
N-A transition, 7™ is the critical temperature of the I-N transition, AT is approxi-
mately equal to the observed width of the nematic zone and &, is the direct correla-
tion radius for the wuniaxial smectic mode. Below we assume that
E5,po>A4d,= AT /TM™), which is satisfied for most liquid crystals with a smectic
phase.

In Landau’s theory, Hamiltonian {1} describes the following transitions: isotropic
liquid-nematic (J-N transition: Q #0; S = 0) and isotropic liquid-smectic (/-Sm transi-
tion: Q #0; § #0). The angle between the principal axes of the nematic and smectic
order parameters is determined by H,,. It turns out that if the appearance of a smectic
condensate occurs for Q < Q. ~ ¥ /Aint» then this angle vanishes (smectic 4 ), and in
the opposite case, the angle does not vanish (smectic C). Correspondingly, additional
transitions appear in the proposed model: nematic-smectic-4 (N-4 ), nematic-smectic-
C (N-C}, smectic-A-smectic-C (4-C). All transitions from the isotropic liquid to the
ordered phases turn out to be first-order transitions. A tricritical point appears on the
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N-A transitions line, and re-entrant behavior is possible. The behavior of thermodyna-
mic quantities is determined by the form of the phase diagrams. Thus, for example,
when the nematic region expands, the magnitude of the anomaly is the heat capacity in
the N-A transition decreases, disappearing completely as the re-entrant point is ap-
proached, in accordance with the experimental results (6)."”

3. Let us examine more closely the influence of the smectic fluctuations on an I-N
transition using the proposed model. The phase volume, which is related to fluctu-
ations of the uniaxial smectic mode, is anomalously large. As a result, in the first
approximation it is sufficient to include only fluctuations of this type. In the self-
consistent-field theory, this leads to the fact that the critical temperature correspond-
ing to the I-N transition is displaced and itself becomes a function of the temperature
of the system. The singularities of all thermodynamic quantities near this transition
are now determined by the quantity 7 = (7' — TW))/T™),

In the single-loop approximation (as in Refs. 3 and 4) the contribution of other
terms is small), the equation for the inverse susceptibility near an /-N transition has the
form

a b
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The quantity 7, defined by Eq. (4) and directly related to the intensity of light scatter-
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FIG. 1. Temperature dependence of the inverse intensity of light scattering near an -V transition in 8 CB A\
are the experimental results.” The solid line shows the calculation using Eq. (4) with the following values of
the constants: AT =7 and a = 0.01, b = 0.001.
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ing near the I-N transition (J~7 "), reproduces the “bend,” observed experimentally,
on the curve of the temperature dependence of the inverse susceptibility (Fig. 1).

4. Smectic fluctuations also renormalize the direct correlation length of smectic
fluctuations:

=2 1+ % (5)
r.=1r — .
0 [ 321".(2)(A0 +7 ) 5/2

The growth 7 (which amounts to 40% for 8CB with the values chosen for the con-
stants) must widen the region of applicability of the self-consistent-field theory. We
note that inclusion of smectic fluctuations leads to renormalization of the constants ¥,
and A in H,, decreasing, in particular, 4, and thereby also extending the region of
applicability of the self-consistent-field theory.

5. The fluctuation part of the heat capacity of the I-N transition in the Ornstein-
Zernike approximation has the form
a2
- 8R ( a'r) 12

Po16n7 or

(6)

Here all quantities are assumed to be renormalized by smectic fluctuations. In the
single-correlation-length approximation, g = 5. R is the universal gas constant.

The experimental results obtained by Thoen et al.° and the theoretical curve,
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FIG. 2. Heat capacity of 8 CB near an /-N transition.® The solid line shows the calculation using Eq. (6).
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constructed using Eq. (6) with the same values of the constants 4, a, and b as in Fig.
1, are shown in Fig. 2. The only adjustable parameter was the quantity r,. In the
section from the bleaching point T'; to T — T, =5°, there is nearly complete agree-
ment between theory and experiment, approximated in Ref. 6 by a crossover function.
It turned out that 7,~1.16 and Ty, — TW~0.2" (in Ref. 6 T, — T™=0.07).

Equation (6) apparently describes the general behavior of the heat capacity near
the I-N transition, independent of whether or not a smectic phase exists in the liquid
crystal. If, as the experiment on MBBA,” BMOAB,? and others shows, the susceptibil-
ity has a “bend” near I-N, then the temperature dependence of the heat capacity will
be renormalized according to Eq. (6).

We thank E. I. Kats and V. M. Filev for useful discussions and also J. Thoen for a
preprint of Ref. 6.

" A more detailed analysis of the thermodynamic consequences of the proposed model will be published
separately.
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