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The metal-insulator transition is examined for interacting electrons in a disordered
system. The renormalization-group equations are derived for two cases: transitions
in a magnetic field and transitions in the presence of magnetic impurities. It is
shown that in the critical region the frequency or temperature dependence of the
conductivity is governed by a new invariant charge z.

PACS numbers: 71.30. + h, 72.10. — d

1. Experiments on disordered materials reveal that the dc conductivity goes to
zero in a continuous manner'? at the metal-insulator transition, and not in a jump.
For this reason the theoretical treatment of this transition is currently proceeding in
the spirit of the theory of second-order phase transitions. The construction of a theory
incorporating both localization effects® and Coulomb correlations”® has not yet been
fully realized. An important attempt to construct a plausible scheme was undertaken
by McMillan.® However, McMillan did not derive the renormalization-group equa-
tions which he used to describe the transition. In a recent paper'® the present author
proved the renormalizability and derived the renormalization-group equations for the
case in which the interference corrections in the Copper channel are suppressed. Here
it becomes clear that the McMillan scheme has certain shortcomings: The single-
particle density of states should not appear among the rencrmalization-group charges.
Furthermore, it was shown in Ref. 10 that the renormalization-group equations con-
tain, in addition to the resistivity and Coulomb amplitudes, still another charge z,
which arises on account of the renormalization of the frequency coefficient in the
propagator for the diffusion of an electron of fixed energy:

S Yy ()Y, ()Y ) >, = Dd* —iz W)™ (1)

It is shown in the present paper that z plays an important role in the description of the
transition. In the critical region, the dependence of the conductivity and other proper-
ties on the frequency o of the external field (or on the temperature 7'} is governed by
the size of the parameter z near the fixed point of the renormalization-group equations.

€+ W

2. For a finite frequency « the characteristic electron diffusion length correspond-
ing to (1) is

L, =(D/zw)" (2)

In the critical region the correlation length £ is much greater than L, and under these
conditions the conductivity is given by

~p272-d
o~e Lw , {3)
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where d is the dimensionality, and we have set #i = 1 throughout. To find o{w) we use
the Einstein relation:

o/e* = (dn/du)D,. (4)

Here D, is the diffusion coefficient for the total density of interacting electrons, and
dn/du is the compressibility, which, in contrast to the case for the single-particle
density of states, does not contain diffusion corrections.'” As was shown in Ref. 10,

D,= (1+Fy)D; ojeé* = (1+F°)%D, (5)
L

where D is the quantity contained in the propagator (1), and F, is the constant from the
Landau theory of the Fermi liquid. Solving (3) with allowance for what was said above,
we find

o(w)~e? (Qﬂ-zw)(d"z)/d (6)
ou

The following types of behavior of z are possible in the critical region: {(a) z — const. In
this case o{w)~w'’? for d = 3, just as in the case of noninteracting electrons,'’ where
there is no renormalization of z whatsoever (z = 1). (b} z— 0. In this case the depen-
denc of o on @ is governed by the exponent { which describes how z approaches zero.
(c) z— .

3. For describing the transition in a magnetic field or in the presence of magnetic
impurities, the equations of the renormalization group can be derived in much the
same way as was done on Ref. 10, since in both cases the Cooper channel is sup-
vressed.'>!* To incorporate the Coulomb interaction, two quantities are used: vI™ and
vl,, where I" is the small-angle and I, the large-angle scattering amplitude, and v is
the constant

- (1 + Fo) —aL .
ou
it is important here that these two amplitudes correspond to different structures of the
spin indices:
P‘p+a ‘bp.f.k"llﬁ d/p*ﬁk P2w+a lpp.,.kwpﬂ.{.kwp'g
+a
lll lIlp-l-k'lbjll/p-l-k(raa.li By I8 ay ﬁ6)

sfor describing the transition, equations should be obtained for the following dimen-
sionless quantities: z, vI", vI,, and L ¢~ 20/¢% where L is the length variable, which
changes in the renormalization process. There is an important relation among these
quantities'’:

z=2v— w0, (7

Satisfaction of (7) ensures that the renormalization-group equations comply with the
condition of conservation of the number of particles.'

a) Magnetic field. In the vicinity of the transition the region of interest is
w, T<g,eH /mc, where g, is the Landé factor." Here the Zeeman splitting leads to

518 JETP Lett., Vol. 37, No. 9, 5 May 1983 A.M. Finkel'shten 518



the cutoff of the pole in the diffusion propagator with opposite electron spin projec-
tions.'*"* Taking this fact into account, we can derive the following equations in first
order in € =d — 2:

r d-2 4k, dG 1 z+[ z
o/e*=G (=) 4, =eG-—(2+ 2 n , (8)
L 4 dx d v, z+I,
dz 1 ( r) avl, dz dv?l 0 o)
—=F - ——Z—- P s = ; =
dx 4G PP ax dx dx

Here x = In(L /¢;,), where £, is the mean free path, and k, =27+ 'r 42/ {(1/2)d).
These equations have an unstable fixed point corresponding to the metal-insulator
transition. It follows from (9) that in the critical region z — (1 + vI"5)/2, where I'J is
the amplitude I" without the diffusion corrections (the Fermi-liquid constant).

b) Magnetic impurities. Let
Z ¢p+ “ d’g—l— q = 6aﬂwo(q) + aaﬂw(q)’
P

where ¢’ are the Pauli matrices. Magnetic impurities lead to the cutoff of the pole in
the field correlator w,® so that w® is important. One is readily convinced that the
Coulomb amplitudes in this case lead only to the combination (2vI~ — v}, which, by
virtue of (7), is equal to z. For this reason, the diffusion corrections in the presence of
magnetic impurities should be particularly simple.” To first order in € we have
(x =1nL /£&):
d-2 4k
ofet=G 2Ly 4., dG_.g_ 1, dz_. 1, (10)
L 7 dx d dx 4G

Thus, in the critical region we have z~{#,/L_)*, and from (2)(5) we find

o ~ @@ d-3) (11)

To first order in € we obtain the critical exponent { = 1/4G * = ¢/2.

4. We have been discussing the dependence of o on the frequency of the external
field for w> 7. In the cases under consideration here the renormalization of the quanti-
ty G in Egs. (8) and (10) is cut off at L = min(L, 4,,), where, by analogy with (2}, the
temperature length is L, = (D /zt)"/?. Therefore, if @ < T we have in the region of the
metal-insulator transition

o~ TW@-2)/(d-5), (12)

where { = 0 in the magnetic-field case and { = €/2 in the magnetic-impurity case.

Without going into details, we conclude that the basic distinction between the
theory of the present paper and that of McMillan® lies in the fact that the relationship
between the energy and length scales is governed by the charge z, rather than by the
single-particle density of states, as was proposed in Ref. 9.

I wish to thank D. E. Khmel’'nitskii and A. I. Larkin for discussion of this study.
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! Finkel'shtein'® considered the behavior of a two-dimensional system in another temperature region:
eDH /c> T>g, eH /mc. The properties of the system when g, <1 turned out to be particularly interesting.
In this case the logarithmic growth of the resistivity with decreasing T is replaced by a decline.

2T am indebted to B. L. Al'tshuler and A. G. Aronov for pointing this out to me.
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