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A perturbation theory derived for highly excited states is applied to the hydrogen
atom in a magnetic field. The energy density of the states and their polarizability
are calculated.

PACS numbers: 32.30.Jc, 31.20.Wb

In a well-known approach in classical mechanics, one distinguishes between fast
and slow motions*? in order to reduce the problem to a simpler one, i.e., to obtain an
average Hamiltonian for the slow motion. In the present letter we propose an analo-
gous procedure for highly excited states in a discrete spectrum. If variables can be
separated for the unperturbed system, then simple rules can be found for determining
the changes caused in the level energies by perturbations and for finding the matrix
elements of physical quantities. Of particular interest in connection with the problem
of the hydrogen atom is the case of classically degenerate frequencies. We will apply
the theory to the problem of a hydrogen atom in a magnetic field.
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The linear Zeeman effect causes a level shift mw_/2, where m is the azimuthal
quantum number, and o, is the cyclotron frequency. We are then left with an (n — m)-
fold level degeneracy, which is removed by the quadratic effect. The quadratic Zeeman
effect for Rydberg states was studied experimentally in Refs. 3-5, where a pseudo-
crossing of levels was found in a magnetic field. A theory for the quadratic Zeeman
effect was derived in Refs. 6-11. The semiclassical quantization conditions were found
there for the case with a quadratic Zeeman effect; the only distinguishing feature of
these quantization conditions is the particular choice of variables. In the present letter
we report calculations of the state density and polarizability of a Rydberg atom in a
magnetic field. The Hamiltonian of the problem is (we are using atomic units)

H=H, + mw, D 1 i

Z r

where w, = J/c is the cyclotron frequency, and p is the component of the radius
vector perpendicular to the magnetic field. Where perturbation theory is applicable
(V<H,), the quantization condition can be written as follows in parabolic coordi-
nates®*:
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where E is the level energy, reckoned from the Coulomb energy, — 1/2n% n and m are
the principal and magnetic quantum numbers; k is the “electrical” quantum number
in parabolic coordinates; s is a new adiabatic invariant, which takes on integer values;
the turning points k,, are determined by the condition that the argument of the arc
cosine is equal to + 1; and the phases are ¢,, =0 or 7.

Quantization condition (1) is expressed in terms of the complete elliptic integral of
the third kind, which poses severe difficulties for analysis. The expression for the state
density ple) is far simpler. The states of a Rydberg atom in a magnetic field are
symmetric with respect to inversion for — n? + m?><e<n? — m? and for any permissi-

ble values of |m|/n. If |m|/n < 1/y5, then some of the states with energies

— 3(n* 4+ m?) 4 Snm<e< — n> + m?

are asymmetric and twofold degenerate®®'":
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where K (A) is the complete elliptic integral of the first kind, and
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Eqauation (1) holds for symmetric states. For asymmetric states we have
16K(1/N) \
ple) = Gl
nwin® /R? —[2(n* + m*) + 3¢ ]

State density (1), (2) diverges logarithmically to infinity at € = —n®> + m*(A =1). A
stronger singularity {a root singularity) arises in the particular case |m|/n = 1/45.
Figure 1 shows the state density for |m|/n = 1/2(2) and |m|/n = 1/y5(1). Figure 2
shows p(& for the case m=0. The energy variable here is
&€ =¢/n’, and p = pwln’/16.

Let us examine the level shift in a weak electric field, & «%?n*/c?. As shown in
Ref. 3, when a field is applied in the same direction as the magnetic field, the Stark
effect is always quadratic for symmetric states or linear for asymmetric states. Calcu-
lating the average value z = (3/2)nk, we find

<z> =t ¢ 4

&<z> =t ———
winp(e) @

The linear Stark shift and the state density are thus related by simple expression
(4), which can be tested experimentally. In other cases there is no linear Stark effect.
Let us write the expressions for the quadratic corrections to the levels, ¢, and ¢, for
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the cases in which the electric and magnetic fields are respectively parallel and perpen-
dicular to each other. The result for the general case is extremely complicated, but for
m<n (a case of physical interest, which arises during optical excitation) the general
result simplifies greatly, becoming

_ 9% ( 4 E(7\)
5 K()\) )

where E (4 ) is the complete elliptic integral of the second kind. The shift is positive and
inversely proportional to . A calculation of the transverse shift yields

ons&? BN | 2(3+6)% + 160%)

be, =
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The transverse shift is negative and independent of the magnetic field. The trans-
verse polarizability is smaller by a factor w2n°<1 than the longitudinal polarizability.
We note that @?n® is the parameter of the classical perturbation theory. Figure 3
shows curves of (5) and (6) (6, = b€, /9, be, = — b€,-32/27n°).

In summary, the properties of highly excited states of the hydrogen atom in a
magnetic field can be described in extreme detail. The linear Stark shift is determined
by the state density. The signs of the quadratic shifts are different: The atom is a
paraelectric in the longitudinal direction but a dielectric in the transverse direction.

FIG. 3.
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The calculation method will be described in more detail in a separate paper.
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