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The axial (triangle) anomaly of antisymmetric tensors is shown to be nonzero. This
result is used for a correct determination of the axial anomaly, which turns out to
be equal to the conformal anomaly in supergravities with N = 1,...,8. At N3, both
anomalies disappear.

PACS numbers: 04.60. + n, 11.30.Pb, 12.25. +¢

INTRODUCTION

1. The absence of anomalies in quantum field theory is an important test in the
derivation of a relativistic theory of elementary particles. Anomalies present a problem
in supergravity, offered as a candidate for the role of a unified theory of all fundamen-
tal interactions: It is believed that the conformal and axial anomalies in a gravitational
field do not form a multiplet," and the axial anomaly, in contrast with the conformal
anomaly,>* does not disappear in supergravities with?> N>3. In this letter we show that
this problem can be resolved by incorporating an axial anomaly of an antisymmetric
tensor (“notoff”’)* and by refining the definition of the axial anomaly in supergravity.

2. Axial anomaly of an antisymmetric tensor. It has previously been believed that
the axial anomaly occurs only in the case of fermions, i.e., fields of spin 1/2 and 3/2,
while for boson fields, including antisymmetric tensors described by second-order La-
grangians, the axial anomaly does not occur.>? To analyze this point we note that in
the classical theory of the field 4, ) which is interacting with a gravitational field
there is a conserved axial currentj;, =D"* A% A, , where 4 ¥, =1¢,, " A4, (by vir-

tue of the equations of motion and the auxiliary condition D”A = 0). We also con-
sider the quantum Lagrangian of the field 4,,, {in a harmonic gauge),
Lq=— VE (DHAS P = VED A, ) + Ly ()

where the ghosts are vector and scalar particles. For the dual transformation 4,,,
— A%, we have

A‘w —>A:y
= M * A = .
Sg . == 2VEDHAL D AM-—\/gD”; /x}+ ”;:V() (2)
where
X .. NA A
Ji =DMALA,+ DA AL B
qu

We now consider the average identity (2), (SL(x)), here (F(x)) is
JdA,, d®,, expliS,,} F(x). Using the substitution of variables 64, = D, §, in the
corresponding functional integral, we find a Ward identity in the gravitational field:
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<D“A;;v(x/13uMS (y) >=0. 4)

The expression ([8S,,/64,,,(x)] A%, (x)) is poorly limited. By a regularization proce-
dure we find for it"’

88qu

Ab - - A8 4-
T A% (x)> = <A ATEN L L KIS
uv (X

rs

= V&(ba[1,0] - bal 0,1])= PPy ———R*, s R¥M (x)

where 4,5 =A,, +A%,and 4 * 4 * =0 is the equation in the gravitational field
for the self dual ( ) and anti-self-dual ( — ) parts of the field 4,,, . It thus follows from
{2}, (4), (5) that if there is gauge invariance with respect to the gravitational field and
with respect to the field 4,,, [in the form in (4)], then we have a triangle axial anomaly

for the latter:
<DHS (x)>= 481 R* . R (6)
m?

M qu MVAS

where j;_, is defined in (3). Equation (6) is a new (in comparison with Ref. 5) local
version of the Rokhlin-Thom-Hirzebruch theorem,® which relates the number (n;") of
harmonic (anti-)self-dual 2-forms with the signature of the manifold, 7) and the Pon-
tryagin number P:
AS

nz-—-ng—r P/3 P—B—Tﬁ—fd“x\/g MV}\GR#V (7)
The relationship between (7) and (6) is the same as that between the Atiyah-Singer
theorem’ regarding the index of the Dirac operator and the fermion 4° anomaly.?

The field 4, ,,, , makes a double negative (with respect to 4,,,) contribution to the
axial anomaly, since ghosts 4 {,,,;, 4, appear upon its quantization.

3. Axial and conformal anomalies in supergravity. To determine the anomalies we
begin with the question of just which field transformations are to be studied and
whether the corresponding local substitutions of variables, ¢ “ = ¢ ' + 8¢ /(x), are per-
missible in the functional integral. The general equation for the conformal-chiral
anomalies of some set of fields in a gravitational field is

fd¢lexpi (S[d,g,,]1} 8¢ (1) =8 ()< T (x)>+idg(x) <. D, j* >. (8]

80 (x)

For fields describable by a reducible representation of the Lorentz group ¢ [4,B], the
conformal-chiral transformations are 8¢ [4,B ] = (6f(x) + idg(x) ¢ [A,B](+ forA>B
and — for A<B). These anomalies were calculated in Ref. 1 for thecase R =R ,, = 0:

2(4 +B) -
-1 <TH (x)>=bs [4, Bl + ba[B, A]=(q, +a ) 5 €+ c?),

| )

DA E<DH 5 > =by[4 B]—bs[B, A1=(0, — o V5o (€1 =C2)
-
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where C, are the (anti-)self-dual parts of the Weyl tensor, and

s[4, B]= 2 [1 -——A—— -fg—A 24 —D;

W AB 15 2 g | (10)
«-[4, B]= - —B ——B(B-1].
% 2 2

If we were to use these expressions as in Ref. 1—if we were to sum the axial anomalies
of the various spinor fields with a unit chiral weight—then we would find (ignoring the
antisymmetric tensors)
' 1

<D* j5, ®)>=(IN,, —N__ )?‘,32-;2(@2 -, (11)
where N, ,, is the number of gravitinos, and N, ,, is the number of fields with s = 1/2.
This anomaly does not disappear in any of the theories presently under consideration.
The situation is not improved by incorporating antisymmetric tensors. In a study of
supersymmetry theories, however, the pertinent transformations are not the confor-
mal-chiral transformations of the various representations of the Lorentz group but the
corresponding transformations for supermultiplets. The result is a modification of the
expression for the axial anomaly in the supersymmetry theories.

Let us examine the supermultiplets ¢, [4,B ] containing the fields [4,B] and
fA—1,B], and the “binary” supermultlplets ¢.14, B] containing the field [4, B],
[A—1,B],{4,B—1}and [4 — — i]. We define the conformal-chiral transforma-
tions for these supermultlplets as follows 5¢. 14, B, = (6f(x) + ibg(x)) ¢.[A4, B 1.
(and an analogous definition for ¢,.[4, B ]), where the plus sign corresponds to A>B
and the minus sign to 4<B. We wish to emphasize that the sign of 8glx) is determined
by the leading values of A and B in the given supermultiplet; this circumstance unambi-
guously fixes the chiral weights of the various spinor fields and of the 4, fields in
the given supermultiplet. For such transformations the conformal-chiral anomaly is, in
accordance with (8),

1
A+ B
2D < 14, B> =0 [4,5] 57@””‘?)

=478 C+C®), 12
“- 12 o G+ (12)
1 .
—1)2UB) <pHS 4, BI>=0q (4, B]W—(Cf~0i)
1
_ B
= 44* o <G —c) (13)
Since 1
a,[4,B]=a [4,B]~2 [4 -~ B]=0, (14)
and
S4Bl )>=<D*;% 4 B}, )>=0, (15)
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since
1 1
o, [4,B], =ay [4,B] =2y 4~ —-, Bl =2 51

1
2 E
It follows from (12) and (14) that for ¢.[A4, B ], the conformal and chiral anomalies are
determined by the same number, in accordance with (9), while for ¢.[4, B ], both of
the anomalies vanish. Expanded supergravities are described in the first loop by means
of some set of N = 1 superfields y(x, 6 ), @,(x, 6) (chiral) and H,,(x, 6, @), ¥,x 0,0),
¥, (x, 6,0), Vix, 6, 0) and (general),’® which agree in terms of components with the
supermultiplets described above:

¢. 13,01, 2¢.[1,0]
and
¢ [L1], 6.1 1], ¢ [41])e, . (4, 410
respectively. It follows from (13) and (15) that only the fields ¢, [4, B ] contribute to

the axial anomaly in the gravitational field; fields ¢, [A4, B ]. do not contribute. The
single-loop axial anomaly in the expanded supergravity is thus

+ 4o, [A—— B- ;_]=0. | (16)

1
. _ — 17
<D "‘]5# (x)>——[Nc[_‘2L, 0]+ IONZC[I, 0] ] 24‘ 321r2 (q Cq_), ( )

where N,(;,,01 Ny 10y is the number of corresponding supermultiplets. The most
natural version of supergravity with N>3 is described only by the fields ¢.[4, B ]. (in
the superfield description, the corresponding canceling superfield is real'®), so that
both the axial and conformal anomalies are zero for these theories.

We wish to thank V. I. Ogievetskii, A. Tseitlin, and A. S. Schwarz for a useful
discussion.
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