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A class of axisymmetric open configurations has been found. In them a long, thin
plasma with <1 can be stable.

PACS numbers: 52.30. +r, 52.55. — s

1. Let us examine the MHD stability of a low-pressure plasma (8 = 87p/B *«]1,
where B is the magnetic field) lying near a smooth but otherwise arbitrary surface of
revolution (Fig. 1). There may be several magnetic mirrors along the field, so the
pressure varies along the length of the system. In Fig. 1 a plasma with ps£0 fills
regions 1 and 2; in connecting region 3 the pressure is negligibly low (but the conduc-
tivity is high, as in regions 1 and 2). The mirror ratios are assumed to be only slightly
greater than unity, so that p, >p|. To streamline the equations we assume that the
electron pressure is much lower than the ion pressure.

2. In the limit S—0 the most dangerous flute waves are electrostatic waves:
E = — V@, where @ remains constant along a magnetic line of force. The stability
condition is'™
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FIG. 1.
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Here F (€, i, ¥) is the unperturbed ion distribution function, which depends on € = v*/
2, u =v: /2B, and the magnetic flux ¢; v, =vy2(€e —pB)-B; and p, and p, are func-
tions of two coordinates, ¢ and the “longitudinal coordinate” A, whose surfaces of
constant value run perpendicular to the i = const surfaces. The integration over d/ is
carried out along a line of force; the element d/ will be expressed in terms of ¢ and 4
below.

We restrict the discussion to the case in which the relative change in dB /dy over
the length of a single confinement system is Sp, /p, . In this case the term with JF /¢
simplifies: The terms with 4> “nearly” cancel out [the sum is <py [(1/B)(3B /)17,
and the leading term which remains, which is linear in g, reduces to
2p, L(1/B)(3B /3¥)]?, so that

.1 a(p+p)\aB —p
W= raraps|~ O (PP T T, 2)
oy B* /8y B3 \ oy /
We thus find the sufficient condition for stability to be
9 aB
f——(p—l——u)—dl<0 (3)
oy B? 3y

3. Assuming that the field B = By, is given on the magnetic surface ¢ = 0, along
which we measure A, we find B (,4 ) near it. It is convenient to temporarily transform
to some different orthogonal coordinates: w, which is measured in the meridional cross
section along the normal to the curve ¢ = 0; s, which is the coordinate of the base of
the normal (Fig. 2); and the azimuthal angle @. In terms of these coordinates the flux
Y =rA(rot4 e, = B) can be written as the series’
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where r(s) is the distance from the curve 3 = O to the axis, kyfs) = R, '(s) is its curva-
ture, 6,(s) is the angle between the vector w and the radial direction (Fig. 1), and the
prime denotes differentiation with respect to s. Evaluating the field components B,
and B_, we find

FIG. 2.
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For a transition to the coordinates ¢ and A, we use (4) to express w in terms of :
w = y/rB + ko — (l/r(,}cos O/ roBy) + ... We also wuse the expansion

=5 — —[(rOBO) /roBo] W + ... (which follows from the condition V¢VA = 0), and we
then find s(4,¥). As a result, we find

v 1 k
B=Bo~ koBy — + — {1k + =2 coshy
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where now By, ro, ko, and 6, are functions of A.

4. The case k, = 0 corresponds to the Andreoletti-Furth confinement system,>®
in which there may be a shallow minB. The weak effect of a finite &, on the stability of
such a confinement system was discussed in Ref. 6 (the effect is weak because we are
dealing with the case in which the plasma occupies the region near the point with
ko =0).

5. Let us consider the case in which, in contrast with the Andreoletti-Furth case,
the terms with (ryB,) in (6) are unimportant, but the terms with the curvature &, are
important. We assume

ro(\Bo(\) = const (7)

in the regions with p50. Substituting dB /d¢ from (6) and dI = (1 + ky0/roBy)dA into
{3), we find a sufficient condition for the stability of a thin plasma (Sw==A4 <r,,R,):

f(;k-o“ koCOSOO l!/ ) 0 p.l

ro Yo

+
PP > o (8)

We require that the leading term in ¢ in (8) vanish with an accuracy to 4 2/r3:

k
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This is possible if ky (A ) has an alternating sign. In this case, (8) reduces to

kocos@ 0
pEoclo O PLTRY gy <, (10)
fb a\// B

Under condition {9) and with (natural) pressure distributions such that y¥(Jd /dv¥){p/
B?) <0, the condition k, cos 8, > 0 is sufficient for stability (this is the case shown in
Fig. 1).
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The reason for the stability of this configuration is that at k, cos 8, > 0 the decay
of B as a function of ¢ in the field-convexity direction occurs more slowly than linear-
ly. The constant part of dB /d4 is of course the main part, so that in each of regions 1
and 2 one boundary is convex, and the isolated systems 1 and 2 are unstable. When the
confinement systems are connected, on the other hand, dB /J4 is averaged out over the
length, and under condition (9) the effects of the curvature cancel out. The effect which
remains is equivalent to the presence of an average minB (with a depth ~4 */r,R),
since, as mentioned earlier, we have d B /d)” >0 in both confinement systems (al-
though there is no well in either).
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