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The probability distribution for the wave function of an electron moving through a
disordered, one-dimensional chain of scattering centers is found in the short-
wavelength limit.

PACS numbers: 72.10.Bg

We are interested in the following problem. We have the equation

d*¥(z) ,

— [k 2V(z) ¥ (2)= 0,
4
where V{z) is the potential created by randomly distributed centers. In the intervals
between centers, the wave function has the form

Yz)=a, e*? 14 %2 - W (2)+ W (z),
Scattering by a center is characterized by the linear transformation

a, = oy a + By q e 2ikzy a_=6’fa+e“k'zl +ata , logi2- 18, P=1, (1)

wherea . and & are the amplitudes of the wave functions to the right and left of the
center, respectively. The coefficients a, and £, do not depend on the coordinate of the
center z,. The values of the wave functions at the entrance (z = 0) and exit of a chain of
length z satisfy the relations
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¥, (z)=a«¥, (0)+8¥ (0), ¥ (z)=p* ¥, (Q)+a*¥ (0), la|* —I8i% =1 (2)

The coefficients a, 8 depend on the specific realization of the distribution of centers
along the chain and in this sense are random quantities. The problem is to find their
probability distribution.

This problem is the subject of many papers concerning Anderson localization
and, in addition, the short-wavelength limit (large k) is of greatest interest. Some
results are known for the average values (see, for example, Refs. 1-6 and the review in
Ref. 7, concerning similar problems). Mel’nikov found the complete solution of the
problem in the case of weak scattering by a separate center (|3,]<1) {see also Refs. 1
and 3, where the solution is presented for a potential in the form of Gaussian white
noise). The general solution in the short-wavelength limit is obtained below.

We shall introduce the probability density W (a,z) for the probability that the
vectora=(Rea_,Ima ,Rea_, Ima_)assumes at the point z a given value if at the
point z = 0 it has the value a,. It satisfies the following obvious equation:

oW (a,z)

=n[ W(a, z)-W(a,z)], (3)
0z

where 7 is the density of centers and W (a,z) = W (4,z), while a is related to a by relation
(1). This equation is exact, since the probability of finding a center at point z is inde-
pendent of the probability that the amplitude has a definite value to the left of the
center. The boundary conditions for this equation can be prescribed only on the left
end of the chain (z = 0). We transform to new variables p_, p_,é, y according to the
equation ¥, =p , expli(y 4- ¢)]. Then Eq. (3) assumes the form

ow oW

——&;— + k?‘})— = n(W——W/., (4)

We note that the relation between W and ¥, does not contain the coordinate of the
center. It is easy to show that )( Y does not depend on y, so that (4) retains its form
after averaging over y. In what follows, W is the probability averaged over y. In the
limit of large k, we can seek W in the form of the expansion W= W 4+ w/k 4 ...
In the zeroth-order approximation, dW ©/d¢ = 0, while the condition for solvability of
the first approximation leads to the equation

(0) 27
14 f

— (w<°> w®). (5)

The probability W depends only on p, and p_. However, p* — p? =J is, accord-
ing to (2), a conserved quantity (flux). For this reason, we can write
W9 =§(J—J,) F(lz), where I =p° + p?, . Weshall seek F for boundary conditions
of the specific form J, =0, I, = 1. As will be evident, this is sufficient for solving
completely the problem stated at the beginning of the paper (we note that under such
conditions the function F describes the distribution of the electronic density of a local-
ized state). From Egs. (1) and (5) we find
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dF(I zj gy
= =n [ — [F(qlz)-F(Lz)]. (6)
0z o 2

Here g =y, ++/9% — lcosy, v, = la,|* + | B1|* =1+ 2 R, /T}; R,,T, are coefficients
of reflection and transmission for scattering of an electron by the center. From Eq. (6)
it is easy to obtain

z dIFF(I, 2)=exp {[ 2, (v)~1]nz }, U

where P, is a Legendre function [F(/,z) can be obtained from this equation by an
inverse Mellin transformation, but this is not our purpose]. We shall show that the
result (7) permits obtaining the complete solution for the probability distribution of the
transition matrix {2). This matrix contains three independent parameters, which we
shall choose as ¥ = |a|®* + | B|* = 1 + 2 R /T (R and T are the coefficients of reflection
and transmission for the entire chain) and the phases of the coefficients « and . The
probability density w(y,z}, which gives a statistical description of the transition matrix
for the chain, must be determined. Evidently, F(/,z) is expressed in terms of w(y,z):

2% oo

F(I,Z)=ofﬂ—fde(%z)fs(f—f(’)’;dl, Jo, 10 )), (8)
1

where I (y,1, Jo,lp) = vIo + > — 1 \JI3 — J% cosy is the sum | ¥, |> + |¥_|?, written
in terms of initial values Ji,, [, with the help of the transformation (2). Setting here
Jo = 0,4, =1, multiplying (8) by /°, integrating over I, and using (7), we obtain for
w(y,z) the integral equation

o0

Jdyw(rz)E (v) = exp {[F(11)~-1]nz}. (9)
i
This equation is solved using a Mohler-Fock transformation®:
w,z)= [ dtP  (Y)tth(n) exp {[P i (y1)—-1]nz }. (10)
0 ~kwir R

Equation (10} is the solution of this problem.

From (9) it is easy to find the averages for the integral powers  (setting s = 1,2,...)
and for Inf(y + 1)/2]) = In(1/T) (differentiating it with respect to s and letting s ap-
proach O):

<y>=2<1/T}>~-1 =exp [(2R{/ Ty)nz}], <Wn(1/T)>=nzIn(1/T;).

Multiplying (10) by T'= 2/(y + 1) and integrating, we obtain a general expression for
the average transmission coefficient of the chain

<T>=21f dtt th (nt) p |
=27 ; pran exp {[ Lo (r1)—1lnz}.

For weak scattering and a white noise potential, the well-known resuits'~ follow from
the equations presented above (here the distribution (10) goes over into the distribu-
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tions in Refs. 1, 3, and 5). Other limiting cases are also easily obtained from (10):
R,—1, large x, etc. Substituting R, and T, which correspond to delta-function centers,
the equations for {1/7) and (In(1/T")) coincide with those obtained in Ref. 6, where
scattering was not assumed to be weak.

We note some exact results following from (3) for arbitrary £. Multiplying (3) by
la, |%|a_|*(a a* ), we can obtain a closed system of first-order differential equations
with constant coefficients for the corresponding average values. Assuming all averages
to be «exp(vnz), we find the characteristic equation v* 4 81> +[6 +4k?*n~?
+8Rea)(Ima,)kn~"Iv—8|B,|*k*n"2 =0, § =4 — 4Re a,)*. For the boundary
conditions |a , o] = 0,{a_,| = 1, the quantity |a_|? is equal to 1/7T. Thus (1/T") can be
found exactly for arbitrary values of z and k. We note that the z dependence of (1/T")
contains oscillating terms. The root of the characteristic equation for which Re v is
maximum determines the behavior of (1/7) for large z: {1/7T ) « exp(z/!). In the sim-
ple case of delta-function centers, 1// = 2(k 2n)'’* for |k, + k*/n|<|k,(k,/n)'"?| and
1/1=2k};/(2k, + k*/n) when the inverse inequality is satisfied and 2k, + k*/n>0
(— #2k2/2m is the energy of the bound or virtual state in the field of an isolated
center). In the short-wavelength limit, (kI>1,| k, |I>1) 1/] = 2nk,/k*> = 2nR,/T,.
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