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It is shown for the perturbed sine-Gordon equation that the motion of the localized
(solitonlike) part of the solution describing the evolution of a soliton under the
action of small perturbations does not correspond to the equations of the adiabatic
approximation.

PACS numbers: 03.70. + k, 11.10.Qr

Considerable progress has recently been made in the study of nonlinear equations
that are exactly integrable by the method of the inverse problem.! However, in study-
ing real physical systems, equations arise that as a rule are not exactly integrable. But
sometimes the nonlinear equations describing interesting physical phenomena differ
little from exactly integrable equations. Solutions of such equations are usually ana-
lyzed with the help of perturbation theory.

A well-known nonlinear equation used to describe the properties of various phys-
ical systems”™ is the sine-Gordon (SG) equation. An equation, which differs little from
the SG equation, has the following form in the dimensionless variables:

u, —u  tsinu= eRuj, (1)

where € = const is a small parameter, while the operator R determines the type of
external perturbation. For example, when Eq. (1) describes the dynamics of a one-
dimensional crystal in the Frenkel-Kontorov model,® the perturbation R takes into
account the difference between the equations of the dynamics of a discrete chain and
the equation for the leading order continuum approximation. In this case,’

eR[u]= aquc ey ¥ Blhyrxsx {2)

We shall concentrate on studying the evolution of solitons in systems described by
the equation in Ref. 1. It is customarily assumed that the dynamics of the soliton,
acted upon by an external perturbation, is described well by the so-called adiabatic
approximation.” ' However, we shall show that successive application of perturbation
theory, based on the method of the inverse problem,' gives in first order with respect
to the small parameter results differing considerably from the adiabatic approxima-
tion.

We seek the solution of Eq. (1) describing the evolution of a soliton under the
action of small perturbations in the form**

ulx, t) =ufz)+euVfx, t) + .. (3)
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The first term
us(z) =4iarctg &, z=(x -1 -3, @

is called the adiabatic approximation. It coincides in the form with the unperturbed
soliton, but its parameters { and v depend on time and, in addition, v = v, and £ = £,
at ¢t = 0. The functions #'"(x,t) satisfy the initial conditions #'V(x,0) = 0

Using the scheme of the scattering problem,' as well as the equations describing
the evolution of scattering data for the discrete spectrum only under the action of
perturbations,'? we can obtain up to order € equations describing the time dependence
of the parameters in the adiabatic approximation

dv
______(1 v )2, ), 5
o v )y “Jo(e) (5)
at _ ) 2
— - v—zvu YA (6)
where

®  Z"Rlu/z)
J ) = J dz ~-—[—s———]—— , n=01.

- oe chz

Using the equation for the inverse problem' and solving the equation of the per-
turbed evolution of the scattering data for the continuous spectrum,'? we obtain the
first-order correction with respect to €, which we write in the form

O (x, t)=uy(z) + us(2,2) + wiz, 2, z27), (7
where
12 Rpuyy ufyl)
u;fz) = —— 2<% [dy __[,___] F(z, y) Rl z.-y)% (8)
4chz |- o0 chy 2 chy j
Cn vzgzj ) vz i@ o)
= —— Jo(v) + — J1(v).
(2 2) achz" 2chz

Here
F=(x—Co ~ t/vo)/'(l ‘0(2,)1/2’
= (x~ to® tjf(1 — v2)?,
F(z, y) =e¢~ Zchy + eychy._ z+ytuv (Z—y)’——l.

The last terms in {7) describe the waves emitted by the soliton which propagate with
velocities differing greatly from the velocity of the soliton. We do not write out w in
explicit form.
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We shall examine the odd perturbations for which R [u,(z)] = — R [u,( —2)].
Such perturbations include perturbations (12), perturbations of the type examined in
Refs. 3 and 4, as well as trivial increments of the type « sin », which do not spoil the
exact integrability of the starting equation.

It is easy to verify that in the case of odd perturbations the second term in (7) and
the terms containing v? in the term u,{z) completely compensate the first-order correc-
tion, which is obtained from the adiabatic approximation. For this reason, the velocity
of the localized part of the solution changes in the initial period for £<ty~ (1 — vy) "/

evot? T s shzPlu(z)] '

10
6% -oo ch3z 10

U=Vg —

Thus, under the action of odd perturbations, in contrast to the adiabatic approxima-
tion, the initial soliton accelerates according to the law (1).

For 1>, solution (3) in first order with respect to € has the form
ugfx, t) = darctge® + euy(zq), zo = (x = Lo — vot)f(1 — ug)‘”. (11)

We shall call expression (11) a deformed soliton, which is formed by the evolution of
the starting localized perturbation. It can be verified that the deformed soliton (11} in
the approximation examined is an exact solution in the form of a wave with a station-
ary profile for the perturbed equation (1). For example, for perturbation (1), the de-
formed soliton (11) up to terms of first order can be written in the form

2
(2a - 36) (50220 } thz") .

a- v;)2 ch’z,

ugs = darcigexp(z[ 1 —B/2(1 —v2 )] } + 1

For 2a = 343, expression (11) coincides with the first terms in the expansion of the
exact soliton solution found in Ref. 5 in powers of a.

In the case of even perturbations, the motion of the localized part of solution (3)
for #«¢, is not described by the equations of the adiabatic approximation. For example,
under the action of a constant external force, the initial motion of the soliton is not a
uniformly accelerated motion, which is well confirmed by numerical experiments.'3

Thus the description of the motion of a soliton under the action of external
perturbations within the scope of the adiabatic approximation, based on examination
of the evolution of only the discrete spectrum of the scattering problem, does not
describe the physical situation. It is necessary to take into account the corrections that
arise due to the evolution of the continuous spectrum under the action of perturba-
tions, which also contribute to the dynamics of the localized part of the solution
{deformed soliton).

We thank V. A. Marchenko and the participants of his seminar for useful discus-
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