Dynamics of smectic liquid crystals

E.|. Katsand V. V. Lebedev
L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR

(Submitted 6 May 1983)
Pis’ma Zh. Eksp. Teor. Fiz. 37, No. 12, 594-597 (20 June 1983)

Nonlinear fluctuation effects in the dynamics of smectics are examined. It is shown
that they lead to a low-frequency divergence « ™" in the kinetic coefficients. The
logarithmic dependence of the coefficients in these divergences is calculated.

PACS numbers: 61.30.Cz

In describing the nonlinear properties of smectic 4, instead of the layer spacing
u,' it is more convenient to use the function W, whose significance is that the equation
W = const determines the position of a layer of molecules. In terms of this function,
the leading terms in the expansion of the free energy F have the form

F=fd3r(-§((VW)2—l'z)2+—K2~(V2W)2)- (1)

Here 8 and « are the elastic moduli, and / is the distance between layers (period of
modulation of the density). At equilibrium, W, = z/l, where the z axis is oriented
perpendicular to the layers. As shown in Refs. 2 and 3, fluctuations around this equi-
librium value lead to logarithmic renormalization of the moduli £ and x with the
following dependence

ﬁ ~L—4/5 K~L2/5- (2)
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Here L = In{A /max(k,,lk %)) is the large logarithm and A is the cutoff parameter.

It is natural to expect that strong long-wavelength fluctuations are also manifest-
ed in the low-frequency dynamics of smectic 4. Mazenko et al.* calculated the first
fluctuation corrections to the viscosity coefficients and found that they diverge at low
frequencies as o™ . However, the higher-order corrections in perturbation theory also
diverge in the same way. For this reason, it is clear that the analysis of the situation
cannot be restricted to first-order perturbation theory. To include higher-order correc-
tions in perturbation theory, we shall use the method developed in Ref. 5 by Khalatni-
kov, Sukhorukov, and one of the authors of this paper (V. L.)

Using the nonlinear equations of hydrodynamics of smectics, constructed in Ref.
6, we find the following nonlinear equation for W
?W 1 O6F o I' 6F

L L (3)

ar p* W ot T §W

We note that Eq. (3) was obtained in the zeroth-order approximation with respect to
the parameter 3 /pl ‘c* ~ 1073, where c is the velocity of sound. Only the first dissipa-
tive term was retained in Eq. (3) (with coefficient I"), which, as will be evident below, is
not fundamental.

The dynamic correlation functions containing W can be found by averaging with
respect to the “microcanonical” distribution, corresponding to Eq. (3). The distribu-
tion function reduces in this case to a “functional” delta function, whose argument is

Eq. (3), on whose right side we must add the random term 3 /3¢ (T £), where £ is
white noise. We raise the delta function into the exponent with the help of the auxil-
iary variable p and average over the white noise, integrating over £ with the weight

exp ( .—»LIT Jdrd3rg?)y.
As a result, we obtain the distribution function exp(i/), where I is the action with
Lagrangian
i
= —p W - —;—(Vp YW)a (P(IW)? —1) —pbV*W+ip S W+ -plp-
4)
Here the self-energy function Z and the polarization operator II are determined by the
kinetic term
pl’T
T

a .
L=—i @9 - b7 ) —- M=-2r%,..

However, the first correction of perturbation theory, obtained by expanding with
respect to the interaction in the Lagrangian (4), already strongly renormalizes 2 and
11, giving contributions of the form

T=—2igV? %, M=—1v%. (5)

Thus, the fluctuation damping of the mode in smectics, which is attributed to the
order parameter, is of the order of the frequency and, in addition, this is valid at all
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frequencies, so that there is no region in which “normal” hydrodynamics is applicable.
Renormalization of Lagrangian (4) with functions 2, Il of the form (5) leads to the
appearance of logarithmic corrections to the constants a, b, g, 7, so that the renormal-
ization-group equations must be used in order to determine the long-wavelength be-
havior of these quantities.

We introduce the following single-particle Green’s functions:

G(w,k)=— < W (W, k) p(—w,—k)> D(w,k)=— <W(w,K) W-w.-k)>, (6)

The function G is the susceptibility of the system relative to the external force, while D
is the pair correlation function. The poles of the G function, which lie in the lower
half-plane, determine the spectrum of characteristic oscillations of the system. From
(4), (5), and (6) we obtain

1

Here we use the notation 7> = ak 2 4 bk *. At the pole of the G function the equation
gives the following spectrurn:
wy = —igk? t - gkt (8)

We note the following expression for the single-time correlation function, following
from (8),

—f%‘;j0=r/4gn2- 9)

We now write out the renormalization-group equations for the quantities entering
into Lagrangian (4]. The interaction in it gives rise to the nonlinear term with coefli-
cient a. It is convenient to represent the corresponding renormalization equations
graphically (see Fig. 1). In these diagrams, the continuous line indicates the G function,

———

H\ B FIG. L.

711 JETP Lett., Vol. 37, No. 12, 20 June 1983 E.l. Katsand V. V. Lebedey 711



the dashed line indicates the D function, while the shape of the vertex represents the
structure of the nonlinear term: the open ends correspond to VW and the shaded ends
correspond to Vp; the straight line segments connect quantities that form convolu-
tions. The first diagram gives the renormalization of ¢, the second gives the renormal-
ization of 7, and the third gives the renormalization of b and g. In addition, in the last
two diagrams, the equilbrium value W, should be inserted at the external W ends.
Integrating the expressions indicated over frequency and angles and going over to the
differential equations, we find

d=—1d%/gh?? grz_i_ a +b/g2)'ra“2/b3’2, (10}

1.1' — _1; (l +b/g1) 1.2 al /2/ng/2 b' — Jz__.raIIZ/gbl/Z.

Here the prime indicates differentiation with respect to the variable L!*/1287. 1t fol-
lows from (10) that

7/g=const dg*/db=g*/b +1. (11)
Taking this fact into account, we obtain from (10)
a ~L?%*% b~ L% g2=blInb/b, . (12)

The condition 7/g = const reflects the fluctuation-dissipation theorem and ensures, as
is evident from (9} and (12), that the statistical limit is satisfied.

Corrections to the viscosity coefficients are determined by terms nonlinear with
respect to W in the stress tensor, in which the “logarithmic” fluctuation corrections
must be included. The fluctuation corrections to the viscosity coefficients are propor-
tional to an integral of the form

dvd®q ,
617 NIW-’ﬁZD(V,q)D(O)"’V,q)- (13)

Equation {13) takes into account the fact that in the limit a/c*~107><1, we can set
k = 0 in the integrand. Carrying out the integral in (13}, we find, after substituting (12),
that
1 72 p? 1
oy~ — [/5 14
n le g2b3/2all2 le ( )

This expression for the fluctuation part of the viscosity coefficients leads to an absorp-
tion coefficient for sound that is linear with respect to frequency. At low frequencies,
this contribution to absorption is known to exceed the usual “linear” absorption o« 2,
We note that this gives a qualitative explanation of the numerous experiments (see
Refs. 7-9), in which a strong deviation of the absorption of sound in smectics from the
law @” was observed.

A detailed discussion of the problems examined above will be given in a separate
paper.
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