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An N = 2, 4, Yang-Mills theory with a soft breaking of the expanded
supersymmetry is analyzed. With N = 4, there are no divergences in the mass
renormalization in any order. With N = 2, the mass and charge renormalization
constants are the same and contain only single-loop divergences. Calculations are
carried out to two loops.
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One of the attractive features of supersymmetry theories is the reduction in the
number of parameters containing ultraviolet divergences. In the Wess-Zumino mass

model,' for example, invariance with respect to supertransformations and a special
form of the Lagrangian (related to the requirement of renormalizability) make the
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renormalization constants of the superfield, the mass, and the charge equal. There is
one independent renormalization constant instead of the expected three.

Some recent three-loop calculations in Yang-Mills supersymmetry theories®> in-
dicate that ultraviolet divergences cancel out in this case. In the N =4 Yang-Mills
supersymmetry theory there are no ultraviolet divergences, at least in the single-, two-,
and three-loop approximations. In the N =2 theory there are divergences in the
charge-renormalization constant at the single-loop level, but not at the two- and three-
loop levels.®> This tendency is expected to continue in the higher orders.*

Any supersymmetry theory claiming to be realistic must be a gauge theory and
undoubtedly must contain mass fields. It is therefore interesting to examine the renor-
malization of not only the charge but also the masses.

Let us examine the renormalization of the masses of the matter fields in the
theory describing the interaction of a vector N =1 superfield ¥ with several chiral
scalars of N = 1 superfields §;. Its effect is described by

S,=S+8,,

where

S=

Tr{f dxd*oww
8g2C { f a }

2 - —

+ —Tr {fdxd*0d*fexp[ — 2gV]Siexp[2V]S; }
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n m, —
§,=—2 —Tr {fdxd’HS,Si + fdxd"GS'Si}.
i=1 ¢
Here :
2
LY=[X Y]; W¥ = (- D7/ (¢ 26V D%V,
a is a ghost chiral superfield; « is the gauge parameter; and i, j, k = 1, 2, ..., n. All the
fields transform in accordance with an associated representation of the gauge group:

V=vV*ere Si=S;’T“, a= a°T*?
[T" Tb]= l-fabc T¢ famn fbmn = &b
If m, =0, for y =0 and n = | we have the N =2 Yang-Mills theory in terms of
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N =1 superfields, while for ¥ = g and n = 3 we have the N = 4 Yang-Mills theory in
terms of N = 1 superfields.” For m,; #0, the N = 2, 4 supersymmetry is broken in a
soft fashion.

In the Wess-Zumino gauge,® we find the following results in terms of the ordinary
fields from the equations of motion:

S, = fdx L,
~ o 1 L1 s 1o
L= Tr¢- ZF Fuv+5(DuAi) +5(DuBi) _Ewml m
ig g
— j 2 2

iy n
2L B 2 myey (4,14, Ayl = 4,18, By

1" - 1
2 2
+ ZBl.[A’.,Bk]— 5 E (m?AZ+ miB}  — my;) }; .
i=1

Here

A
e=|¥¢.}
A

and the matrices a and £ satisfy
[, 8] =0, (afal}, = {B%8/), =~ 267,
tr(e’of )= tr(B7B) = — 48",
Our purpose here is to examine the mass renormalization in the first few orders of
perturbation theory,
Mp; =Zsim'. t &m,

and to analyze the associated anomalous dimensionalities

v = dlamp,
m, 2 -
i olng® 'm, g fixed.
According to a calculation of the divergence index,’ there are no quadratic diver-
gences in these theories; i.e.,

Sm ;= 0.
Consequently, it is sufficient to know simply the renormalization constants for the
wave functions of the fields S;:

mR.=

-1
i ZS. m; = Zmimi.

i
We have calculated Z,, both in the N = 1 superfield formalism and in terms of ordi-
nary fields, up to two loops inclusively. We used a regularization by the dimensional-
reduction method and the °t Hooft minimum-subtraction method.® In the latter meth-
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od, the introduction of masses does not alter the charge renormalization constant and
thus does not alter the renormalization-group S function. Furthermore, there are no
changes in the renormalization of the wave functions.

We can derive the relationship between 8 and ¥ in all orders of perturbation
theory in the N = 4 case. Since the renormalization constant for the S.5,S, vertex is
unity according to a calculation of the divergence index,” we have

g = Z;,.Z.;I; g = Zg'l.gz'
Differentiating the ratio
gym; = gplmy,
with respect to In u? and holding g* and m;, fixed, we find
Be*) = 38 Yo, (5 )
Since we already know that B (g%) = O up to three loops inclusively, we also have
Ty (£3)=0.
In th(;, N =2 case, calculations in the superfield approach with two loops lead to
Ty (8R)= = e 2R )
(411)

Calculations in terms of the ordinary fields in the singleloop approximation yield
the analytic functional dependence of y,, on N. This number is related to the number
of scalar fields, n

N=n+1l,

which arises in a calculation of the Feynman diagrams containing a scalar trace. In
this approximation we have

£x
(4my?
In the two-loop approximation, because of the interaction

~ Zmyey (4l4; 4] — 4B, B] + 2B[4;,B,]},

v,,‘,;)(g;)= WV - 4

which occurs only for & = 4, we cannot derive an analytic functional dependence on N
in the obvious Way For N = 4, the contribution of diagrams with this interaction to
Vi, I8 — 127g 4/(4m)*. Noting that in general these diagrams make a contribution
— 6(N — 2)c’gg /(47)*, and adding the contributions of the other diagrams, in which
the analytic functional dependence on N can be found in a trivial way, we find the
following result for y,, in the two-loop approximation:

(2) g5 gz
(8%)= (V- 4)c(4),[1—2/ —2)(4),]
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Comparison with the result derived previously® for f3,

£ g’
BNk ) = (N 4)c (fw)‘ [1 —2¢(N ~ 2) —-B,],

(4ny

reveals

£
B Pgk)= (—4%2 7,,‘,?’ (g%)-
We thus see that the charge and mass renormalization constants are related in not only
the N = 4 theory but also the N = 2 theory. These constants are the same at least up to
two loops inclusively. As shown above, this is true in all orders for N =4, and it
probably remains true in the higher orders for N = 2. These studies indicate that there
may exist a finite four-dimensional quantum field theory containing massive fields.
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