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Pion transition form factor for the process v*v* — #° at space-like values of photon momenta is calcu-
lated within the effective quark-meson model with the interaction induced by instanton exchange. The leading
and next-to-leading order power asymptotics of the form factor and the relation between the light-cone pion
distribution amplitudes of twists 2 and 4 and the dynamically generated quark mass are found.

PACS: 13.40.Gp

The pion form factor M,o0(q?,q3) for the transition
process Y*(q1)v*(g2) — 7°(p), where g; and g are pho-
ton momenta, is related to fundamental properties of
QCD dynamics at low and high energies. At zero pho-
ton virtualities the observed value of the width for the
two-photon decay of the my—meson
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is consistent with the theoretical prediction due to the
chiral anomaly for g

M0 (0,0) = (472 f,) 1, (2)
where f, = 92.4 MeV is the pion weak decay constant.

The existing experimental data from CELLO [1] and
CLEO [2] Collaborations on the form factor M, ¢ for one
photon being almost real, g2 ~ 0, with the virtuality of
the other photon scanned up to 8 GeV?, can be fitted
by a monopole form factor:
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where gryy = 0.275 GeV~! is the two-photon pion de-
cay constant. The large ? behavior of the form factor
(3) is in agreement with the lowest order perturbative
QCD (pQCD) prediction [3]
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where the leading (LO) and next-to-leading (NLO) order
asymptotic coefficients J (w) are expressed in terms of
the light-cone pion distribution amplitudes (DA), ¢, (z):
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In the above expressions Q% = —(¢? + ¢3) > 0 is the
total virtuality of photons and w = (¢ — ¢2)/(¢? + ¢3)
is the asymmetry in their distribution. The distribution

1
amplitudes are normalized as [ dzg,(z) = 1 and the
0

parameter A? characterizes the scale of the NLO power
corrections. The first perturbative correction to the LO
term in (4) has been found in [4] and the NLO power cor-
rections have been discussed in [5, 6] and more recently
in [7] within the light-cone sum rules.

The leading momentum power dependence of the
form factor (4) is dictated by the scaling property of the
pion DA. But the coefficients of the power expansion de-
pend crucially on the internal pion dynamics, which is
parameterized by the nonperturbative pion DAs, ¢, (z),
defined at some normalization scale u, with & being the
fraction of the pion momentum, p, carried by a quark.
At asymptotically large normalization scale g — oo the
DAs are determined in pQCD:

o) (z) =

However, for the description of the experimentally ob-
servable hard exclusive processes one needs to know the
DAs normalized at virtuality u? ~ 1 GeV2. The aim of

6z(1 —z), %, () =302°(1 —2)*. (6)
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this letter is to calculate the pion transition form factor
in the kinematical region up to moderately large Q2 and
extract from its power expansion in 1/Q? the pion DAs
at normalization scale typical for hadrons. The calcula-
tions carried out within the effective model with nonlo-
cal quark-quark interaction are consistent with the chiral
anomaly and result in the relations between the DAs of
twists 2 and 4 and the dynamically generated nonlocal
quark mass. The usage of the covariant nonlocal low-
energy model based on the Schwinger-Dyson approach
to dynamics of quarks and gluons has many attractive
features as the approach preserves the gauge invariance,
it is consistent with the low-energy theorems and takes
into account the large distance dynamics of the bound
state. Furthermore, the intrinsic nonlocal structure of
the model may be motivated by fundamental QCD inter-
actions induced by the instanton and gluon exchanges.

The effective quark-pion dynamics motivated by the
instanton-induced interaction') may be summarized in
terms of the dressed quark propagator

S (p)=p-M(p%),

the quark-pion vertex

T (k,p, k' = k + p) = — F(k?, k)77,

™

F (K k%) = VM (k) M (k?),

and the quark-photon vertex satisfying the Ward-
Takahashi identity

T (k,q, k' = k — q) = eQ [7” —(k+%),G (k2,k’2)] ,

M (k) — M (k?)
k2 — k2 ’

G (k2,kl2) —

where M (k?) is the dynamically generated quark mass.
The dynamical quark mass characterizes the momen-
tum dependence of an order parameter for spontaneous
breaking of the chiral symmetry and may be expressed
in terms of the gauge invariant nonlocal quark conden-
sate [9]. The inverse size of the nonlocality scale, A,
is naturally related to the average virtuality of quarks
that flow through the vacuum, A2 ~ A?. The value of
A2 is known from the QCD sum rule analysis, A2 ~
~ 0.4 4+ 0.1GeV? [10], and, within the instanton model,
may be expressed through the average instanton size,

DSee for a review e.g. [8].
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Pe, a8 A2 ~ 2p_? [11]. The pion weak decay constant is
expressed by the Pagels-Stokar formula

fr=1 D2 (u)
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™
0
where M'(u) = £ M(u) and D(u) = u + M?(u).
The invariant amplitude for the process y*y* — m°
is given by

A (v (g, €))7 (g2,€2) = 7° (p)) =
= _ieZEMVPUG'lltegqfngﬂo (q%a qg) )

where €' are the photon polarization vectors. In the ef-
fective model one finds the contribution of the triangle
diagram to the invariant amplitude as
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where p = ¢1 + @2, ¢ = ¢1 — @2, k+ = k £ p/2. In the
adopted chiral limit (p> = m2 = 0) with both photons
real (g7 = 0) one finds the result

M, (0,0) =
N, [ . uM(u)[M(u) - 2uM’ 1
- /duu (u) [ g;)(u) uM'(u)] _ ey (9)
0

consistent with the chiral anomaly.

The LO behavior of the form factor at large pho-
ton virtualities is given by the contribution of the first
term in (8) and the NLO power corrections are gener-
ated by the second and third terms in (7) and also ap-
pear as the correction to the first term. Thus, for large
@ = ¢2 = —Q?/2 and p? = 0 the form factor has the
asymptotics

Mo (~Q%/2,~Q*/2)|ga.,. =

_Af, A? 1
=3¢ (1 * @) +0 (@) ’ (10)
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which is in agreement with the expressions (4), (5) for
the asymptotic coefficients at w = 0. The parameter
A? has an extra power of u in the integral with respect
to (7) and thus it is proportional to the matrix element

(m(p)
the sum of the positive contribution coming from the
higher Fock states in the pion, effectively taken into ac-
count by the second and third terms in (8), and also the
negative two-particle contribution due to the first term
in (8)?). Note, that the model provides the opposite sign
of the power correction comparing with the QCD sum
rule prediction [5].

In general case at large Q? the model calculations
reproduce the QCD factorization result (4),(5) with the
DAs given by

gﬂéa,,'yap,tu‘ 0>. The power correction (11) is
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In these expressions the u-variable plays the role of the

=y _
quark transverse momentum squared, k%, and Az, —\Z
are the longitudinal projections of the quark momentum
on the light cone directions. The model DAs are defined
at the normalization scale characterized by the vacuum
nonlocality 42 ~ A2. Concerning the LO DA, ¢\ (z),
the similar results within the instanton model have been
earlier derived in [13,14].

In Fig.1 the normalized by unity LO and NLO pion
DAs are illustrated in comparison with perturbative as-
ymptotic DAs. For the numerical analysis the dynamical
mass profile is chosen in the Gaussian form M (k2?) =
= M,exp(—2k?/A?), where we take M, = 350MeV

2)In [12] only part of the NLO power corrections has been dis-
cussed.
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Fig.1. The pion distribution amplitudes (normalized
by unity): the model predictions for twist-2 (solid
line) and twist-4 (dashed line) components and the
perturbative asymptotic limits of twist-2 (dotted line)
and twist-4 (dash-dotted line) amplitudes
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Fig.2. An admisseble set of the twist-2 pion distribu-
tion amplitudes (dashed lines, the best fit is solid line)
as predicted within the QCD sum rules (from [15b])
with vacuum nonlocality parameter )\2 = 0.4GeV?
defined at p® ~ 1GeV?

and fix A = 1.29 GeV from the pion constant (7). Then,
the value A2 = J@®) (w =1) /J?® (w = 1) = 0.205GeV?
is obtained which characterizes the scale of the power
corrections in the hard exclusive processes. The mean
square radius of the pion for the transition y*7% — 7 is
72, = (0.566 fm)? and numerically close to the value de-
rived from (3). As it is clear from Fig. 1, the predicted
pion DAs at the realistic choice of the model parameters
are close to the asymptotic DAs. The corresponding
conclusion with respect the LO DA is in agreement with
the results obtained in [15, 16] as it is seen from com-
parison of Figs.1 and 2.
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The asymptotic coefficients J(2*) (w) given by (5),
(12) and (13) may be identically rewritten in the form

J? (w) = - ! duu x (14)
]

J® (w) = % /du X (15)

XZdvv{%x

o v (e = ==}

where 2o = w + v(1 £ w). With the model pa-
rameters given above we find the asymptotic coeffi-
cients J?) (w =1) = 0.171GeV and J® (1) /J?) (1) =
= 0.254 GeV? for the process yy* — w°. When the error
in the experimental fit is taken into account, the estimate
of the LO coefficient, J( (1), is in agreement with the
fit of CLEO data J{Z) (1) = 0.16 & 0.03 GeV. The NLO
power correction, A2, grows by 20% with changing the
kinematics from equally distributed photon virtualities
to asymmetric distribution.

In Figs.3 and 4 we plot the model predictions
for the form factors Fr,.(Q?) = Myo (—Q2,O) and
Fryeqe(@%) = My (—Q%/2,—Q%/2) multiplied by
square momentum Q2 for the process yy* — 7% and
y*v* — 70, correspondingly. In Fig.3 we also indicate
the CLEO data. In the model form factors the pertur-
bative a;— corrections [4] to the leading twist-2 term are
taken into account with the running coupling, a,(Q?),
that has zero at zero momentum [17]. With such ef-
fective behaviour in the infrared region the perturbative
corrections do not influent the chiral anomaly. At high
momentum squared the leading perturbative correction
provides negative contribution to the form factors and
compensate the NLO power corrections in the region
2—10GeV2. The unknown perturbative corrections to
the twist-4 contribution is considered as inessential. The
power corrections generated by the twist-3 pion DAs are
also negligible since they are proportional to the small
current quark mass.
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Fig.3. The pion-photon transition form factor

Q?Fryr (Q?) (solid line) and its perturbative limit 27,
(dotted line). The experimental points (QFy+~) are
taken from [2]
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Fig.4. The pion-photon transition form factor

Q?Fryr v+ (@Q?) (solid line) and its perturbative limit
4f./3 (dashed line)

In conclusion, within the covariant nonlocal model
describing the quark-pion dynamics, we obtain the
my*y* transition form factor in the region up to moder-
ately high momentum transfer squared, where the per-
turbative QCD evolution does not reach the asymptotic
regime yet. From the comparison of the kinematical de-
pendence of the coefficients of the power expansion in
1/Q? of the transition pion form factor, as it is given
by pQCD and the nonperturbative model, the relations
Eqgs.(12), (13) between the pion DAs and the dynami-
cal quark mass and quark-pion vertex are derived. The
other possible sources of contributions to the form fac-
tor arise from inclusion into the model of the low lying
vector and axial-vector mesons. They do not change the
result given by the chiral anomaly (9) for the two-gamma
pion decay. The contributions of the vector mesons to
the leading order asymptotics of the form factor are ex-
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pected to be small, but they may be more important in
treating the twist-4 power corrections and the pion mean
radius.
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