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The problem of critical behavior of the 2D Ising model with impurity bonds is
solved by using the Feynman-walk method in the 2D lattice. The fluctuational
part of specific heat was found to be equal to Cy~ —In In|7| as 7—0, in
contrast to the pure Ising model for which Cj~ — In|7|.

PACS numbers: 05.50. 4 q, 65.40.Em, 75.40.Dy

Second-order phase transitions in inhomogeneous physical systems are currently
the subject of intensive investigation. It is now clear that the impurities do not generally
eliminate the singularities in the thermodynamic functions.' However, the defects can
have a strong influence on the singularities, i.e., they can change the critical indices.
This effect was demonstrated in Ref. 1 using the ¢ * model. Attempts have also been
made to explain the influence of impurities on the phase transition for the simple
ferromagnetism model—the Ising model (IM). Here, the 2D model, for which there is
an exact analytical solution in the absence of impurities,? is of interest in itself. Several
important facts have been established concerning the phase-transition line (in the T
plane, and v is the density of impurity bonds), see, for example, Ref. 3. In particular,
the slope angle of the transition line as v+—0 and the critical impurity concentration v,
at which the phase transition disappears 7.(v.) = 0O (Ref. 5) are known for the model
with broken bonds (defect bond J= 0).* However, its critical behavior as 7—> 7, (v) has
not been investigated.

We present in this paper the results of an exact solution of the critical behavior of
the specific heat of the 2D Ising model with a small density (v<1) of the broken bonds
J $J. It turns out that the critical behavior of the model for 7=(T — T)/T.—0 varies
in a universal manner; namely, the fluctuational part of the specific heat behaves in the
following manner:

Cq ~ - Inijr] for r>>r (1)

C, ~ - Inhijrj for r<<r,, (2)
where 7, ~exp{ — const/v} is the temperature scale in which the critical behavior
changes—a transition from the pure Ising model to a disordered model. We note that,
although the small v is used in the solution, the universality of the critical behavior
gives us serious reasons to assume that the fluctuational part of the specific heat of the
disordered Ising model is defined by Eq. (2) as T-»T,(v) at any density v <v,.

We shall examine the 2D Ising model with impurity bonds. Its statistical summa-
tion has the form
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Here K, ,=J, /T has the value # = J /T in most bonds, and the broken 8 = J/Tin
the impurities which are randomly distributed in the lattice with a small density v.
Calculation of the statistical sum (3} by using the standard method reduces to a sum-
mation over the configurations of the closed loops and then to a Feynman walk
through the lattice with the phase exp(i4d¢ /2) for each turn of the wandering particle.®
After these transformations, the statistical sum (3) assumes the form Z =exp — F

F= X (8))0(P)., (4)
P p

Here A,=A1, , = tanhK, , is the scalar weight of one bond spacing (x,a), 84, is the
scalar weight of the closed path P, and @ (P) = fPexp® (iA¢ /2) is the phase factor of the
amplitude of the path P. We must average the free energy (4) over the random coeffi-
cients A;. The averaging for each lattice bond (but not the path) in our model is done
independently: A, =1 with a probability of 1 — v, and 4 with a probability v. It is
important that the paths, in which one lattice bond can be traversed several times,
contribute to the summation over the paths for the free energy (4). For example, there
is no shortcut (becasue of the amplitude phase factor) for the path in Fig. 1, since the
sum in (4) is taken over single loops. As a result, the averaging of the free energy (4)
results in the “cementing” of paths at the recurrent bonds, and there will no longer be
graphs for the free walks.

The problem is solved in the following manner. It is known that the ordinary 2D
Ising model in the critical region is equivalent to the free-fermion model. In the La-
grangian approach used by us this means that the 4-component (in a square lattice)
walking objects (see Ref. 6} are transformed into 2-component objects in the critical
region. In other words, only two of the four degrees of freedom fluctuate strongly and
are described by a free spinor field (in the Euclidean formulation) with a mass m ~7:

A0[¢]=fd2x(l/73¢+mz¢). (5)

If the impurity concentration is small, then initially the fluctuations will develop
as in the pure Ising model, as 7 decreases. With further decrease of  and increase of
the correlation length 7. ~ 1/7, the influence of the impurities becomes important. As

FIG. 1.
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pointed out, the averaging free energy (4) results in a “‘cementing” of the wandering-
particle paths. It follows from the arguments presented above that the spinor field
describes the disordered Ising model in the critical region (r—0) in an equivalent
manner, but this time with an interaction. The interaction in this case can be easily
determined. In fact, the randomness of the lattice bonds is simulated in a certain sense
by the randomness of the mass in Eq. (5). A Gaussian averaging over the masses gives
the Lagrangian

- A — —

Alyl= (&% (P29 y% +m Foy — g (Fo92)2 ) (©
Here m, = (m). Notice that these are only guiding considerations. In fact, all four
degrees of freedom of the lattice wandering object, rather than just the strongly fluctu-
ating ones, which are described by the Lagrangian (5), contribute equally to the exact
numerical parameters m, and g, {see below) in Eq. (6). The spinor field ¢ is an N-
component (Grossman) variable, and it is assumed that N = 0 in the results. The well-
known De Gennes trick, which is used in polymer theory for summing over single
paths,” is used here. We reduce in our model the sum over the single paths for the free
energy to the zero-component Lagrangian theory.

The exact solution of the problem in the critical region is as follows. The free
energy (4) is averaged. We obtain a sum over the paths, in which the recurrent bonds
are included with an additional weighting. We must go over the continuous limit for
this sum and then compare the plots with the diagrams of the Lagrangian model (6) for
N = 0. We shall describe the conversion to continuous limit in a later, more detailed
paper. The conclusion, however, is that the disordered Ising model in the critical
region is equivalent to the Lagrangian model (6} (for the formal value N = 0} with the
parameters
A, - A a®(1+2b(1 + ab))

= C 11‘ s, go =V

AC (1+ ab)?

m, =2

i
o

v, ()

Here A =th3,A°%=v2—1,a=(thf—A%/A% b=(v2)4%/4, and ¢, and ¢, are
numbers ~1,

A a
c

A, = thB, =A% —v ®)

c

1+ ab

(all the calculations are accurate to the first power of the impurity concentration v).
The Lagrangian (6) with the constants (7) describes the critical behavior of the model
on the high-temperature side (7> 0). The following substitutions must be made for the
low-temperature phase: A—A4 * = exp( — 28), a—a* = (exp( — 28) — A °)/A%:

o %
)\ca

A, » A% = exp(- 28,) =A% - v (8%)

l+a*b

We note that Eq. (8) gives the well-known numerical value®* in the special case of the
broken-bond model (5 =0)
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dth B, AS
dv 1-b

= 6v7-8.

The next solution poses no problem. The model (6)-the Grosé-Neveu model®—is
renormalizable. The charge and mass renormalization equations have the form
dg 1-N dlam 1-2N
o2 g2, 1t .20 )
d& g d¢ 7

Here £ = In(1/p). See, for example, Refs. 9 and 10 for renormalization-group meth-
ods. For N = 0 we obtain

£o ‘ my
glé) = ——4— m(f) = —— . (10)
2
go {: 1 + go {:
7
We obtain for the specific heat (compare Ref. 10)
c? 2¢ v
1 2 1
C, = f..__B. m(p)) TrG%(p) = In{1 4+ In . (11)
2 (27)* m, de v 7 ¢,

Here G (p) = (m, + ip)/(m} + p?) is the spinor Green’s function.
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