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The wave functions and spectra of complexes comprised of two or more
electrons are determined for a two-dimensional case in the strong-field limit (the
magnetic length is shorter than the effective Bohr radius). The electron
complexes, which are localized in the charged impurity, are calculated. The
spectra for the exciton and spin-wave excitations are obtained for a close-packed
electron system {(all the states of the lower Landau level are occupied).

PACS numbers: 71.10. + x

We present several quantum-mechanical results pertaining to the behavior of a
two-dimensional electron system in a strong magnetic field. Lately, such a system has
been intensively investigated mainly in connection with the two-dimensional Wigner
crystal.'

1. We shall write the energy operator of the electron system in the gauge

sz——;—Hy, Ayz—;—Hx: H=H,+7,
g 1 N2 7 i? 2 *
Hy =53 p,-+l-2(P,-xy,-~P,-yx,-)+“2r +prH2 oy, (1)
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= ’i“_ ik V(l‘i —l'k), l = eH/Fc

where ©* is an effective magneton, which can be substantially greater than the Bohr
magneton for a superconductor. We shall not concretely define the interaction now
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but assume that it is isotropic, i.e., it depends on 7*. We shall also assume that the
magnetic field is strong, so that the matrix elements of the potential, which transfer
the electrons from one Landau level to another, can be disregarded. If ¥ (r} = ¢’/er (€ is
the dielectric constant), then this requirement means that /<#*c/m*e*. We shall at-
tempt to diagonalize the remaining operator exactly. This operator conserves the parti-
cles in each level. It is clear that H, does not change as a result of an orthogonal
transformation of the r; variables, which preserves the form ;77 and 2,p,.y,. There-
fore, the center-of-mass motion can be separated in a system of like particles (in con-
trast with particles having unlike charges) and we can use, for example, the variables
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Since the interaction depends on the difference in coordinates only, the wave function
of the system can be written in the form ¥ = W/"(R)¥,.,, where
. r 2 r 2
V) =gl e L) e~ g
) 212 412

is the solution of a two-dimensional Schrédinger equation for a particle in a magnetic
field in the accepted gauge, which corresponds to the energy €™
= efil /m*c(n + |m| — m + 1/2), and L '™ is the Laguerre polynomial.

2. We shall analyze a two-electron system. ¥ = ‘If(,,'"’(R)\I",:'"(/; .} in the absence of
interaction. ¥ is diagonal in m, because of the isotropy, and the nondiagonal elements
in n; are ignored. We shall, therefore, obtain a two-particle spectrum by calculating
the diagonal elements. For the lower Landau level (n =1, =0)

1 oo x2
el am. 1 - /2 -
Em1 :( — - 2”’7'[1 tem, €m, = — [ S R VV2xl)dx .

m-c [}

(4)

If V= e?/er, then €,, = I'(m, + 1/2)/2elm,\. For m,»1€,, ~m,” "% In spite of
repulsion, the spectrum is discrete and it condenses toward the lower level.

3. We shall limit ourselves for three particles to the spectrum near the main
Landau level. It is clear from the preceding example that the wave function of the
relative motion is a product of exp( — p3 + p3/4/* and the polynomial relative to the
complex variables z, = r, e®*(k = 1,2,3), which depends only on z; — z, and is com-
pletely antisymmetric. We have a third-degree polynomial, a fifth-degree polynomial
and a seventh-degree polynomial
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Py =(zy - 2,)(2,~ 2)(z,) - 2,), P;=PS, P =PS? §-= :2 k(zi - z4)%,

(5)

which determine the wave functions of the three upper states whose energies are,
respectively (in ¢*/€/ units),

E, =122 E, =105, E, =0.94.

There is more than one polynomial of required symmetry beginning with the ninth-
degree polynomial. To determine the spectrum, we must solve the secular problem,
and the wave functions, in contrast to Eq. (5), are dependent on ¥ (r). We shall limit
ourselves to the complete orthogonal basis of the antisymmetric polynomials of
(2m + 1) — degree of orthogonality®

P ( k ) m 1 m 2 m2 m 1 . 1

ame 1= VL Yy Ry Uy o, vy p =2y m 2yt ——= (2 + 2, - 22,

V3
1
m =——2—(2m+1i 3k) (6)

where k is an odd number and 3k<2m + 1.

The wave function of the densest and the highest state & of the particles is deter-
mined by the polynomial /7 (z; — z, ), which coincides with the Vandermondes deter-
i<k

minant of order N. As N— o the particle density in this state tends to (271%)';
therefore, it corresponds to a completely occupied Landau level in the limit of large N.

4. The same procedure makes it possible to solve the problem of the electronic
complexes near the positively charged impurity with the potential ¥ (r) = — e*/er.
The single-electron problem has already been analyzed.> The correct function in this
case is W™(r). The simplest two-electron functions are the product of exp ( — 3 + 3/
412) and the polynomials z, — z, and z3 — z3. The energies of these states, measured
from the zero Landau level, are equal to — 1.44 ¢*/¢/ and — 1.29 e?/€l, respectively.
The three-electron state with the polynomial P, in Eq. (5) also has a negative energy,
— 0.93 ¢°/¢l. In case of necessity, even more complex electronic configurations can be
calculated without much difficulty. The many-electron states bound in the impurity
must be taken into account in the interpretation of the experiment.

5. The problem of the spectrum of the hole system, in which the main level has
several unoccupied states, can be raised in the strong-field approximation {the particles
in the Landau level are conserved). All the results remain the same to within a shift of
the origin of the energy measurement. Note that the holes are repelled from the posi-
tive impurity. If the main level has one vacancy, and the first Landau level has one
electron or its spin is reversed, then new exciton- and spin-wave-type branches appear
in the spectrum as a result of electron-hole interaction. The calculation of these
branches has a lot in common with the problem of the Mott exciton in a strong field.*?
The important difference, however, is that the exchange contribution to the energy
must be correctly calculated in our case. The spectrum appears to be continuous
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because of the opposite sign of the charges of the interacting particle and hole. We
shall give the results without going into details of the calculations:

ehH e W —p%/4 p3 /p%\  pr, 4 p?
E = + —{l-e (1+ —-)I —_—) e I — )
X m*e 2¢l ‘/2 9 °(4) 2 1<4>
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Here I, and I, are the modified Bessel functions and the continuous quantum number
p corresponds to the generalized momentum in / ~' units.” The excitonic branch (7) is
analogous to the vibrational gap branch of the Wigner crystal.! For p«<1 E,, ~efiH /
m*c + e’p/2el, E, ~2u*H + ap*. We also note that the upper limits of the spectra
(p> 1) exceed efif /m*c and 2u*H, respectively.
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